帕斯卡三角函数代码

来源:女性创业 时间:2018-12-07 18:00:02 阅读:

【www.zhuodaoren.com--女性创业】

帕斯卡三角函数代码(共10篇)

帕斯卡三角函数代码(一):

vb求三角函数和画三角函数的程序代码

Private Sub Form_Click()"画正弦函数
Dim i As Single
Me.Scale (-6,6)-(6,-6)
Line (-6,0)-(6,0),vbRed
Line (0,-6)-(0,6),vbRed
For i = -6 To 6 Step 0.001
PSet (i,Sin(i))
Next i
End Sub
要画余弦和正切函数,只要把程序中的sin改为cos和tan即可.

帕斯卡三角函数代码(二):

如何用python表示三角函数
如题,能不能用代码求出已知角度的三角函数值.或由已知函数值求出角度.求代码!

在python中,有一个math module,你可以import math,里面有math.sin(),math.cos(),math.asin()和math.acos()四个函数.相信你也知道asin和acos的意思,就是arcsin和arccos.有了这四个函数你就可以求函数值和角度了.但是要注意括号里面填的数值,要用弧度制.

帕斯卡三角函数代码(三):

VB 三角函数转值问题
在VB中三角函数的单位为弧度,比如说sin(30)算出的结果为30弧度的值.
现求一代码.功能为把三角函数括号内的数值转成角度值.
比如,我在程序中输入sin(30)+48-cos(46)+7.则自动得出这一算式的角度计算值,记住不是弧度计算值.(及通过代码把三角函数括号内的值转为相对应的弧度值,sin(30角度)约等于sin(0.523弧度))

方法一;
一个方便可行的方法是,在你的程序里设置一个变量,用来保存每度对应的弧度值:
Dim hd As Double
Dim PI As Double
PI = 3.14159265358979 "存放圆周率
hd = PI / 180 "存放每度对应的弧度值
Print  sin(30*hd)+48-cos(46*hd)+7
方法二:
自己编写函数:例如:
Private Function MySIN(byval JiaoDu As Double) As Double
MySin = Sin(JiaoDu*3.14159265358979/180)
End FuncTion
那你就可以直接用:MySIN(30)来求30度角的正弦值了.

帕斯卡三角函数代码(四):

MATLAB求解一个简单的三角函数方程,得到的只有一个解,显然有无数个解,问怎么能得到前20个解?
方程是 cos(x)-1/cosh(x)=0
就是想要前20个x的值,求代码

代码如下:
syms x
y = solve("cos(x) - 1/cosh(x) = 0",x);
结果:
y =
matrix([[0]])
只有一个,没有20个解.

帕斯卡三角函数代码(五):

反函数的一些基本知识和极坐标的基本知识知道的速度回了最好详细一点

反函数
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x).则y=f(x)的反函数为y=f^-1(x).
存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)
【反函数的性质】
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】.
(8)反函数是相互的
(9)定义域、值域相反对应法则互逆(三反)
(10)原函数一旦确定,反函数即确定(三定)
例:y=2x-1的反函数是y=0.5x+0.5
y=2^x的反函数是y=log2 x
例题:求函数3x-2的反函数
y=3x-2的定义域为R,值域为R.
由y=3x-2解得
x=1/3(y+2)
将x,y互换,则所求y=3x-2的反函数是
y=1/3(x+2)
[编辑本段]
⒈ 反函数的定义
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= (y). 若对于y在C中的任何一个值,通过x= (y),x在A中都有唯一的值和它对应,那么,x= (y)就表示y是自变量,x是自变量y的函数,这样的函数x= (y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f^-1(y). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
说明:⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式.
⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数.
⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^- 1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数 y=f^-1(x)的定义域(如下表):
函数y=f(x)
反函数y=f^-1(x)
定义域
A C
值 域
C A
⑷上述定义用“逆”映射概念可叙述为:
若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f^-1(x)就叫做函数y=f(x)的反函数. 反函数x=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f^-1(t)=t/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f^-1(x)=x/2-3.
有时是反函数需要进行分类讨论,如:f(x)=X+1/X,需将X进行分类讨论:在X大于0时的情况,X小于0的情况,多是要注意的.一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a
极坐标
在 平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向).对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系.
第一个用极坐标来确定平面上点的位置的是牛顿.他的《流数法与无穷级数》,大约于1671年写成,出版于1736年.此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系.17甚至18世纪的人,一般只用一根坐标轴(x轴),其y值是沿着与x轴成直角或斜角的方向画出的.牛顿所引进的坐标之一,是用一个固定点和通过此点的一条直线作标准,例如我们现在的极坐标系.牛顿还引进了双极坐标,其中每点的位置决定于它到两个固定点的距离.由于牛顿的这个工作直到1736年才为人们所发现,而瑞士数学家J.贝努力利于1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者.J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线.他还给出了从直角坐标到极坐标的变换公式.确切地讲,J.赫尔曼把 ,cos ,sin 当作变量来使用,而且用z,n和m来表示 ,cos 和 sin.欧拉扩充了极坐标的使用范围,而且明确地使用三角函数的记号;欧拉那个时候的极坐标系实际上就是现代的极坐标系.
有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便.1694年,J.贝努利利用极坐标引进了双纽线,这曲线在18世纪起了相当大的作用.
在柱坐标中,x被ρcosθ代替,y被ρsinθ代替.
极坐标系是一个二维坐标系统.该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示.极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域.在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示.对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示.
历史
主条目:三角函数的历史
众所周知,希腊人最早使用了角度和弧度的概念.天文学家喜帕恰斯(Hipparchus 190-120 BC)制成了一张求各角所对弦的弦长函数的表格.并且,曾有人引用了他的极坐标系来确定恒星位置.在螺线方面,阿基米德描述了他的著名的螺线,一个半径随角度变化的方程.希腊人作出了贡献,尽管最终并没有建立整个坐标系统.
关于是谁首次将极坐标系应用为一个正式的坐标系统,流传着有多种观点.关于这一问题的较详尽历史,哈佛大学教授朱利安·卢瓦尔·科利奇的《极坐标系起源》[1][2]作了阐述.格雷瓜·德·圣-万桑特和博纳文图拉·卡瓦列里,被认为在几乎同时、并独立地各自引入了极坐标系这一概念.圣-万桑特在1625年的私人文稿中进行了论述并发表于1647年,而卡瓦列里在1635进行了发表,而后又于1653年进行了更正.卡瓦列里首次利用极坐标系来解决一个关于阿基米德螺线内的面积问题.布莱士·帕斯卡随后使用极坐标系来计算抛物线的长度.
在1671年写成,1736年出版的《流数术和无穷级数》(en:Method of Fluxions)一书中,艾萨克·牛顿第一个将极坐标系应用于表示平面上的任何一点.牛顿在书中验证了极坐标和其他九种坐标系的转换关系.在1691年出版的《博学通报》(Acta eruditorum)一书中雅各布·伯努利正式使用定点和从定点引出的一条射线,定点称为极点,射线称为极轴.平面内任何一点的坐标都通过该点与定点的距离和与极轴的夹角来表示.伯努利通过极坐标系对曲线的曲率半径进行了研究.
实际上应用“极坐标”en:Polar coordinate system这个术语的是由格雷古廖·丰塔纳开始的,并且被18世纪的意大利数学家所使用.该术语是由乔治·皮科克在1816年翻译拉克鲁瓦克斯的《微分学与积分学》(Differential and Integral Calculus)[3][4][5] 一书时,被翻译为英语的.
阿勒克西斯·谢罗特和莱昂哈德·欧拉被认为是将平面极坐标系扩展到三维空间的数学家.
在极坐标系中表示点
点(3,60°) 和 点(4,210°)
点(3,60°) 和 点(4,210°)
正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t).r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向.[6]
比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点.(−3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°).
极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式.通常来说,点(r, θ)可以任意表示为(r, θ ± n×360°)或(−r, θ ± (2n + 1)180°),这里n是任意整数.[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上.
[编辑] 使用弧度单位
极坐标系中的角度通常表示为角度或者弧度,使用公式2π rad = 360°.具体使用哪一种方式,基本都是由使用场合而定.航海(en:Navigation)方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度.[8]
[编辑] 在极坐标系与平面直角坐标系(笛卡尔坐标系)间转换
极坐标系中的两个坐标 r 和 θ 可以由下面的公式转换为 直角坐标系下的坐标值
x = r \cos \theta \,
y = r \sin \theta \,
由上述二公式,可得到从直角坐标系中x 和 y 两坐标如何计算出极坐标下的坐标
r = \sqrt{x^2 + y^2} \,
\theta = \arctan \frac\qquad x \ne 0 \,
[9]在 x = 0的情况下:若 y 为正数 θ = 90° (π/2 radians); 若 y 为负, 则 θ = 270° (3π/2 radians).
[编辑] 极坐标方程
用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数.
极坐标方程经常会表现出不同的对称形式,如果r(−θ) = r(θ),则曲线关于极点(0°/180°)对称,如果r(π−θ) = r(θ),则曲线关于极点(90°/270°)对称,如果r(θ−α) = r(θ),则曲线相当于从极点逆时针方向旋转α°.[9]
[编辑] 圆
方程为r(θ) = 1的圆.
方程为r(θ) = 1的圆.
在极坐标系中,圆心在(r0, φ) 半径为 a 的圆的方程为
r^2 - 2 r r_0 \cos(\theta - \varphi) + r_0^2 = a^2
该方程可简化为不同的方法,以符合不同的特定情况,比如方程
r(\theta)=a \,
表示一个以极点为中心半径为a的圆.[10]
[编辑] 直线
经过极点的射线由如下方程表示
\theta = \varphi \,
其中φ为射线的倾斜角度,若 m为直角坐标系的射线的斜率,则有φ = arctan m. 任何不经过极点的直线都会与某条射线垂直.[11] 这些在点(r0, φ)处的直线与射线θ = φ 垂直,其方程为
r(\theta) = \sec(\theta-\varphi) \,.
[编辑] 玫瑰线
一条方程为 r(θ) = 2 sin 4θ的玫瑰线.
一条方程为 r(θ) = 2 sin 4θ的玫瑰线.
极坐标的玫瑰线(polar rose)是数学曲线中非常著名的曲线,看上去像花瓣,它只能用极坐标方程来描述,方程如下:
r(\theta) = a \cos k\theta \, OR
r(\theta) = a \sin k\theta \,
如果k是整数,当k是奇数时那么曲线将会是k个花瓣,当k是偶数时曲线将是2k个花瓣.如果k为非整数,将产生圆盘(disc)状图形,且花瓣数也为非整数.注意:该方程不可能产生4的倍数加2(如2,6,10……)个花瓣.变量a代表玫瑰线花瓣的长度.
[编辑] 阿基米德螺线
方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线.
方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线.
阿基米德螺线在极坐标里使用以下方程表示:
r(\theta) = a+b\theta \,.
改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量.阿基米德螺线有两条螺线,一条θ > 0,另一条θ < 0.两条螺线在极点处平滑地连接.把其中一条翻转 90°/270°得到其镜像,就是另一条螺线.
[编辑] 圆锥曲线
Ellipse, showing semi-latus rectum
Ellipse, showing semi-latus rectum
圆锥曲线方程如下:
r = {l\over (1 + e \cos \theta)}
其中l表示半径,e表示离心率. 如果e < 1,曲线为椭圆,如果e = 1,曲线为抛物线,如果e > 1,则表示双曲线.
[编辑] 其他曲线
由于坐标系统是基于圆环的,所以许多有关曲线的方程,极坐标要比直角坐标系(笛卡尔形式)简单得多.比如lemniscates, en:limaçons, and en:cardioids.
应用
[编辑] 行星运动的开普勒定律
开普勒第二定律
开普勒第二定律
另见:开普勒行星运动定律
极坐标提供了一个表达开普拉行星运行定律的自然数的方法.开普勒第一定律,认为环绕一颗恒星运行的行星轨道形成了一个椭圆,这个椭圆的一个焦点在质心上.上面所给出的二次曲线部分的等式可用于表达这个椭圆.开普勒第二定律,即等域定律,认为连接行星和它所环绕的恒星的线在等时间间隔所划出的区域是面积相等的,即d\mathbf\over dt是常量.这些等式可由牛顿运动定律推得.在开普勒行星运动定律中有相关运用极坐标的详细推导.

帕斯卡三角函数代码(六):

求方程的发展史 很急!
谁知道方程的发展史? 谢谢【帕斯卡三角函数代码】

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程.而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?.”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大
贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家.少年时酷爱数学,主要从事方程论研究.他是最先认识到行列式价值的数学家之一.最早证明了齐次线性方程组有非零解的条件是系数行列式等于零.他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法.他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理.
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究.
十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根.
十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》.
十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角.
十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现.后人所称的“杨辉三角”即指此法.
十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作.
1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方.
1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例.
1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”.书中提出的联立一次同余式的解法,比西方早五百七十余年.
1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作.
1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和.
1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法.
1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等).
十四世纪中叶前,中国开始应用珠算盘.
1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”.
1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学.
1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识.
1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式.
1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题.
1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论.
1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表.
1614年,英国的耐普尔制定了对数.
1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积.
1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分.
1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”.
1638年,法国的费尔玛开始用微分法求极大、极小问题.
1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就.
1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作.
1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”.
1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱.
1654年,法国的帕斯卡、费尔玛研究了概率论的基础.
1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学.
1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》.
1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究.
1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分.
1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法.
1670年,法国的费尔玛提出“费尔玛大定理”.
1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线.
1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》.
1686年,德国的莱布尼茨发表了关于积分法的著作.
1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究.
1696年,法国的洛比达发明求不定式极限的“洛比达法则”.
1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线.
1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》.
1711年,英国的牛顿发表《使用级数、流数等等的分析》.
1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》.
1715年,英国的布·泰勒发表《增量方法及其他》.
1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试.
1733年,英国的德·勒哈佛尔发现正态概率曲线.
1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机.
1736年,英国的牛顿发表《流数法和无穷级数》.
1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作.
1742年,英国的麦克劳林引进了函数的幂级数展开法.
1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面.
1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论.
1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一.
1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷.书中包括微分方程论和一些特殊的函数.
1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用.
1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法.
1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始.
1772年,法国的拉格朗日给出三体问题最初的特解.
1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学.
1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》.
1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表.
1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学.
1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多.
1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根.
微分方程:大致与微积分同时产生 .事实上,求y′=f(x)的原函数问题便是最简单的微分方程.I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动.他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组.用现在叫做“首次积分”的办法,完全解决了它的求解问题.17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型…….因而微分方程的研究是与人类社会密切相关的.当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等.但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题.
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解.
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题.比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等.
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数.
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式.但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方.
在数学上,解这类方程,要用到微分和导数的知识.因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程.
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布•贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量.
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.

帕斯卡三角函数代码(七):

用mathematica软件,求解三角函数方程组.
形如:Solve[{Cos (x y) == 1,Sin (x y) == 0},{x,y}].为什么mathematica软件计算无解.(其实解为xy=Pi/2)【帕斯卡三角函数代码】

(1)因为你根本不会用mathematica软件,当然求不出解了.你的代码就写错了,函数调用的时候是写方括号,不是小括号.
(2)
其次,当你要求求解一个方程的时候,你应该指定未知数,比如你解一个含有x的方程,那么最终的结果不应该含有x.你既然指定了x,y是未知数,那么最终的解的结果应该是x,y是不含有x和y.你给的解xy=Pi/2,先不说解是错误的,就从数学上来说,这也是不对的,解含有x,y的方程,给出的解应该是单独的解,xy=Pi/2是一条曲线,不是一个单独的解.能够给出解是一条曲线的,那个叫微分方程,微分方程它的自变量是函数.
(3)
用mathematica的时候,应该和以前学过的数学知识结合起来.你求解的是一个方程组,那么以前老师讲过,方程组可能会误解.如果问题本身无解,软件没有义务告诉你为何无解.方程组还有一种情况,叫做同解方程,就是说有的方程是多余的,比如你的这个例子就是,如果发现同解方程,应该去掉.
正确的解法
Solve[{Cos [x y] == 1,Sin [x y] == 0},x]
解出
{{x -> 0}} 这个解告诉你y是一个自由变量.
(4)
mathematica帮助你计算,但是不能够代替你的思考.

帕斯卡三角函数代码(八):

极坐标方程的曲率公式及推导
如题

极坐标系是一个二维坐标系统.该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示.极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域.在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示.对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示.
历史
主条目:三角函数的历史
众所周知,希腊人最早使用了角度和弧度的概念.天文学家喜帕恰斯(Hipparchus 190-120 BC)制成了一张求各角所对弦的弦长函数的表格.并且,曾有人引用了他的极坐标系来确定恒星位置.在螺线方面,阿基米德描述了他的著名的螺线,一个半径随角度变化的方程.希腊人作出了贡献,尽管最终并没有建立整个坐标系统.
关于是谁首次将极坐标系应用为一个正式的坐标系统,流传着有多种观点.关于这一问题的较详尽历史,哈佛大学教授朱利安·卢瓦尔·科利奇的《极坐标系起源》[1][2]作了阐述.格雷瓜·德·圣-万桑特 和博纳文图拉·卡瓦列里,被认为在几乎同时、并独立地各自引入了极坐标系这一概念.圣-万桑特在1625年的私人文稿中进行了论述并发表于1647年,而卡瓦列里在1635进行了发表,而后又于1653年进行了更正.卡瓦列里首次利用极坐标系来解决一个关于阿基米德螺线内的面积问题.布莱士·帕斯卡随后使用极坐标系来计算抛物线的长度.
在1671年写成,1736年出版的《流数术和无穷级数》(en:Method of Fluxions)一书中,艾萨克·牛顿第一个将极坐标系应用于表示平面上的任何一点.牛顿在书中验证了极坐标和其他九种坐标系的转换关系.在1691年出版的《博学通报》(Acta eruditorum)一书中雅各布·伯努利正式使用定点和从定点引出的一条射线,定点称为极点,射线称为极轴.平面内任何一点的坐标都通过该点与定点的距离和与极轴的夹角来表示.伯努利通过极坐标系对曲线的曲率半径进行了研究.
实际上应用“极坐标”en:Polar coordinate system这个术语的是由格雷古廖·丰塔纳开始的,并且被18世纪的意大利数学家所使用.该术语是由乔治·皮科克在1816年翻译拉克鲁瓦克斯的《微分学与积分学》(Differential and Integral Calculus)[3][4][5] 一书时,被翻译为英语的.
阿勒克西斯·谢罗特和莱昂哈德·欧拉被认为是将平面极坐标系扩展到三维空间的数学家.
在极坐标系中表示点
点(3,60°) 和 点(4,210°)
点(3,60°) 和 点(4,210°)
正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t).r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向.[6]
比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点.(��3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° �� 180° = 60°).
极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式.通常来说,点(r, θ)可以任意表示为(r, θ ± n×360°)或(��r, θ ± (2n + 1)180°),这里n是任意整数.[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上.
[编辑] 使用弧度单位
极坐标系中的角度通常表示为角度或者弧度,使用公式2π rad = 360°.具体使用哪一种方式,基本都是由使用场合而定.航海(en:Navigation)方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度.[8]
[编辑] 在极坐标系与平面直角坐标系(笛卡尔坐标系)间转换
极坐标系中的两个坐标 r 和 θ 可以由下面的公式转换为 直角坐标系下的坐标值
x = r \cos \theta \,
y = r \sin \theta \,
由上述二公式,可得到从直角坐标系中x 和 y 两坐标如何计算出极坐标下的坐标
r = \sqrt{x^2 + y^2} \,
\theta = \arctan \frac{y}{x}\qquad x \ne 0 \,
[9]在 x = 0的情况下:若 y 为正数 θ = 90° (π/2 radians); 若 y 为负, 则 θ = 270° (3π/2 radians).
[编辑] 极坐标方程
用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数.
极坐标方程经常会表现出不同的对称形式,如果r(��θ) = r(θ),则曲线关于极点(0°/180°)对称,如果r(π��θ) = r(θ),则曲线关于极点(90°/270°)对称,如果r(θ��α) = r(θ),则曲线相当于从极点逆时针方向旋转α°.[9]
[编辑] 圆
方程为r(θ) = 1的圆.
方程为r(θ) = 1的圆.
在极坐标系中,圆心在(r0, φ) 半径为 a 的圆的方程为
r^2 - 2 r r_0 \cos(\theta - \varphi) + r_0^2 = a^2
该方程可简化为不同的方法,以符合不同的特定情况,比如方程
r(\theta)=a \,
表示一个以极点为中心半径为a的圆.[10]
[编辑] 直线
经过极点的射线由如下方程表示
\theta = \varphi \,
其中φ为射线的倾斜角度,若 m为直角坐标系的射线的斜率,则有φ = arctan m. 任何不经过极点的直线都会与某条射线垂直.[11] 这些在点(r0, φ)处的直线与射线θ = φ 垂直,其方程为
r(\theta) = {r_0}\sec(\theta-\varphi) \,.
[编辑] 玫瑰线
一条方程为 r(θ) = 2 sin 4θ的玫瑰线.
一条方程为 r(θ) = 2 sin 4θ的玫瑰线.
极坐标的玫瑰线(polar rose)是数学曲线中非常著名的曲线,看上去像花瓣,它只能用极坐标方程来描述,方程如下:
r(\theta) = a \cos k\theta \, OR
r(\theta) = a \sin k\theta \,
如果k是整数,当k是奇数时那么曲线将会是k个花瓣,当k是偶数时曲线将是2k个花瓣.如果k为非整数,将产生圆盘(disc)状图形,且花瓣数也为非整数.注意:该方程不可能产生4的倍数加2(如2,6,10……)个花瓣.变量a代表玫瑰线花瓣的长度.
[编辑] 阿基米德螺线
方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线.
方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线.
阿基米德螺线在极坐标里使用以下方程表示:
r(\theta) = a+b\theta \,.
改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量.阿基米德螺线有两条螺线,一条θ > 0,另一条θ < 0.两条螺线在极点处平滑地连接.把其中一条翻转 90°/270°得到其镜像,就是另一条螺线.
[编辑] 圆锥曲线
Ellipse, showing semi-latus rectum
Ellipse, showing semi-latus rectum
圆锥曲线方程如下:
r = {l\over (1 + e \cos \theta)}
其中l表示半径,e表示离心率. 如果e < 1,曲线为椭圆,如果e = 1,曲线为抛物线,如果e > 1,则表示双曲线.
[编辑] 其他曲线
由于坐标系统是基于圆环的,所以许多有关曲线的方程,极坐标要比直角坐标系(笛卡尔形式)简单得多.比如lemniscates, en:lima��ons, and en:cardioids.
应用
[编辑] 行星运动的开普勒定律
开普勒第二定律
开普勒第二定律
另见:开普勒行星运动定律
极坐标提供了一个表达开普拉行星运行定律的自然数的方法.开普勒第一定律,认为环绕一颗恒星运行的行星轨道形成了一个椭圆,这个椭圆的一个焦点在质心上.上面所给出的二次曲线部分的等式可用于表达这个椭圆. 开普勒第二定律,即等域定律,认为连接行星和它所环绕的恒星的线在等时间间隔所划出的区域是面积相等的,即d\mathbf{A}\over dt是常量.这些等式可由牛顿运动定律推得.在开普勒行星运动定律中有相关运用极坐标的详细推导.

帕斯卡三角函数代码(九):

什么是极坐标,与直角坐标有什么区别?

概念
在 平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向).对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系. 第一个用极坐标来确定平面上点的位置的是牛顿.他的《流数法与无穷级数》,大约于1671年写成,出版于1736年.此书包括解析几何的许多应用,例如按方程描出曲线.书中创建之一,是引进新的坐标系.17甚至18世纪的人,一般只用一根坐标轴(x轴),其y值是沿着与x轴成直角或斜角的方向画出的.牛顿所引进的坐标之一,是用一个固定点和通过此点的一条直线作标准,例如我们现在的极坐标系.牛顿还引进了双极坐标,其中每点的位置决定于它到两个固定点的距离.由于牛顿的这个工作直到1736年才为人们所发现,而瑞士数学家J.贝努力利于1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者.J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线.他还给出了从直角坐标到极坐标的变换公式.确切地讲,J.赫尔曼把 ,cos ,sin 当作变量来使用,而且用z,n和m来表示 ,cos 和 sin.欧拉扩充了极坐标的使用范围,而且明确地使用三角函数的记号;欧拉那个时候的极坐标系实际上就是现代的极坐标系. 有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便.1694年,J.贝努利利用极坐标引进了双纽线,这曲线在18世纪起了相当大的作用.
极坐标系
在极坐标中,x被ρcosθ代替,y被ρsinθ代替.ρ=(x^2+y^2)^0.5 极坐标系是一个二维坐标系统.该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示.极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域.在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示.对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示.
[编辑本段]历史
主条目:三角函数的历史
众所周知,希腊人最早使用了角度和弧度的概念.天文学家喜帕恰斯(Hipparchus 190-120 BC)制成了一张求各角所对弦的弦长函数的表格.并且,曾有人引用了他的极坐标系来确定恒星位置.在螺线方面,阿基米德描述了他的著名的螺线,一个半径随角度变化的方程.希腊人作出了贡献,尽管最终并没有建立整个坐标系统. 关于是谁首次将极坐标系应用为一个正式的坐标系统,流传着有多种观点.关于这一问题的较详尽历史,哈佛大学教授朱利安·卢瓦尔·科利奇的《极坐标系起源》[1][2]作了阐述.格雷瓜·德·圣-万桑特 和博纳文图拉·卡瓦列里,被认为在几乎同时、并独立地各自引入了极坐标系这一概念.圣-万桑特在1625年的私人文稿中进行了论述并发表于1647年,而卡瓦列里在1635进行了发表,而后又于1653年进行了更正.卡瓦列里首次利用极坐标系来解决一个关于阿基米德螺线内的面积问题.布莱士·帕斯卡随后使用极坐标系来计算抛物线的长度. 在1671年写成,1736年出版的《流数术和无穷级数》(en:Method of Fluxions)一书中,艾萨克·牛顿第一个将极坐标系应用于表示平面上的任何一点.牛顿在书中验证了极坐标和其他九种坐标系的转换关系.在1691年出版的《博学通报》(Acta eruditorum)一书中雅各布·伯努利正式使用定点和从定点引出的一条射线,定点称为极点,射线称为极轴.平面内任何一点的坐标都通过该点与定点的距离和与极轴的夹角来表示.伯努利通过极坐标系对曲线的曲率半径进行了研究. 实际上应用“极坐标”en:Polar coordinate system这个术语的是由格雷古廖·丰塔纳开始的,并且被18世纪的意大利数学家所使用.该术语是由乔治·皮科克在1816年翻译拉克鲁瓦克斯的《微分学与积分学》(Differential and Integral Calculus)[3][4][5] 一书时,被翻译为英语的. 阿勒克西斯·谢罗特和莱昂哈德·欧拉被认为是将平面极坐标系扩展到三维空间的数学家.
在极坐标系中表示点
点(3,60°) 和 点(4,210°) 正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t).r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向.[6] 比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点.(−3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°). 极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式.通常来说,点(r, θ)可以任意表示为(r, θ ± n×360°)或(−r, θ ± (2n + 1)180°),这里n是任意整数.[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上.
[编辑] 使用弧度单位
极坐标系中的角度通常表示为角度或者弧度,使用公式2π rad = 360°.具体使用哪一种方式,基本都是由使用场合而定.航海(en:Navigation)方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度.[8] [编辑] 在极坐标系与平面直角坐标系(笛卡尔坐标系)间转换 极坐标系中的两个坐标 r 和 θ 可以由下面的公式转换为 直角坐标系下的坐标值 x = r*cos(θ), y = r*sin(θ), 由上述二公式,可得到从直角坐标系中x 和 y 两坐标如何计算出极坐标下的坐标 r = \sqrt{x^2 + y^2} \, \theta = \arctan \frac\qquad x \ne 0 \, [9]在 x = 0的情况下:若 y 为正数 θ = 90° (π/2 radians); 若 y 为负, 则 θ = 270° (3π/2 radians).
[编辑] 极坐标方程
用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数. 极坐标方程经常会表现出不同的对称形式,如果r(−θ) = r(θ),则曲线关于极点(0°/180°)对称,如果r(π+ θ) = r(θ),则曲线关于极点(90°/270°)对称,如果r(θ−α) = r(θ),则曲线相当于从极点逆时针方向旋转α°.[9]
[编辑] 圆
方程为r(θ) = 1的圆. 方程为r(θ) = 1的圆. 在极坐标系中,圆心在(r0, φ) 半径为 a 的圆的方程为 r^2 - 2 r r_0 \cos(\theta - \varphi) + r_0^2 = a^2 该方程可简化为不同的方法,以符合不同的特定情况,比如方程 r(\theta)=a \, 表示一个以极点为中心半径为a的圆.[10]
直线
经过极点的射线由如下方程表示 \theta = \varphi \, 其中φ为射线的倾斜角度,若 m为直角坐标系的射线的斜率,则有φ = arctan m. 任何不经过极点的直线都会与某条射线垂直.[11] 这些在点(r0, φ)处的直线与射线θ = φ 垂直,其方程为 r(\theta) = \sec(\theta-\varphi) \,.
玫瑰线
一条方程为 r(θ) = 2 sin 4θ的玫瑰线. 一条方程为 r(θ) = 2 sin 4θ的玫瑰线. 极坐标的玫瑰线(polar rose)是数学曲线中非常著名的曲线,看上去像花瓣,它只能用极坐标方程来描述,方程如下: r(\theta) = a \cos k\theta \, OR r(\theta) = a \sin k\theta \, 如果k是整数,当k是奇数时那么曲线将会是k个花瓣,当k是偶数时曲线将是2k个花瓣.如果k为非整数,将产生圆盘(disc)状图形,且花瓣数也为非整数.注意:该方程不可能产生4的倍数加2(如2,6,10……)个花瓣.变量a代表玫瑰线花瓣的长度.
阿基米德螺线
方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线. 方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线. 阿基米德螺线在极坐标里使用以下方程表示: r(\theta) = a+b\theta \,. 改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量.阿基米德螺线有两条螺线,一条θ > 0,另一条θ < 0.两条螺线在极点处平滑地连接.把其中一条翻转 90°/270°得到其镜像,就是另一条螺线. 圆锥曲线 圆锥曲线方程如下: r = {l\over (1 + e \cos \theta)} 其中l表示半径,e表示离心率. 如果e < 1,曲线为椭圆,如果e = 1,曲线为抛物线,如果e > 1,则表示双曲线.
其他曲线
由于坐标系统是基于圆环的,所以许多有关曲线的方程,极坐标要比直角坐标系(笛卡尔形式)简单得多.比如双纽线, 心脏线.
应用
行星运动的开普勒定律 开普勒第二定律 开普勒第二定律 另见:开普勒行星运动定律 极坐标提供了一个表达开普拉行星运行定律的自然数的方法.开普勒第一定律,认为环绕一颗恒星运行的行星轨道形成了一个椭圆,这个椭圆的一个焦点在质心上.上面所给出的二次曲线部分的等式可用于表达这个椭圆. 开普勒第二定律,即等域定律,认为连接行星和它所环绕的恒星的线在等时间间隔所划出的区域是面积相等的,即d\mathbf\over dt是常量.这些等式可由牛顿运动定律推得.在开普勒行星运动定律中有相关运用极坐标的详细推导.

帕斯卡三角函数代码(十):

vb一元二次函数y=-x*x 的图像还有函数代码

private sub form_load()
form1.scale (-10,10)-(10,-10)
end sub
private sub command1_click()
dim X as single
form1.line (-10,0)-(10,0) ,vbred
form1.line (0,-10)-(0,10),vbred
for x=-10 to 10 step 0.01
form1.pset(x,x^2)
next x
end sub

本文来源:http://www.zhuodaoren.com/shangji965697/

推荐访问:帕斯卡三角仪器 帕斯卡三角的历史
扩展阅读文章
热门阅读文章