(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:

来源:剧情 时间:2018-08-16 08:00:06 阅读:

【www.zhuodaoren.com--剧情】

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(共10篇)

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(一):

平面直角坐标系的性质

1.用直角坐标原理在投影面上确定地面点平面位置的坐标系
与数学上的直角坐标系不同的是,它的纵轴为X轴,横轴为Y轴.在投影面上,由投影带中央经线的投影为调轴、赤道投影为横轴(Y轴)以及它们的交点为原点的直角坐标系称为国家坐标系,否则称为独立坐标系.
2.数学上的平面直角坐标系
在平面内画两条互相垂直,并且有公共原点的数轴.其中横轴为X轴,纵轴为Y轴.这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系.坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做改直角坐标系的原点.X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限.象限以数轴为界,横轴、纵轴上的点不属于任何象限.
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标.反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点.
对于平面内任意一点C,过点分C别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序数对(a,b)叫做点C的坐标.
在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴.可以通过这中证明方法证明几何.

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(二):

在平面内任取n个整点(横纵坐标都是整数),其中一定存在两个点,它们连线的中点也是整点,那么n至少是?【(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:】

5

想象横纵交错的网格纸,就像棋盘那样的,每个横纵线交点就是一个整点.如下图

 

任意三个点如果共线,即处在水平,竖直,或者对角线上,则其中定存在两个点满足连线中点是整点.

点共

如果n=2,取两个连续的整点,那么连线中点不是整点.

如果n=3,取水平两个连续的点,垂直也两个连续的点,组成三角形.那么连线中点不是整点.

如果n=4,取四个整点组成一个正方形,则连线中点不是整点.

而取5个点的话,必然有两个点的连线中点是整点.

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(三):

19世纪之前,人们对光的本质有哪两种不同的学说

人类对光的认识过程- -
  人类对光的本性认识经历了一个非常曲折、漫长的过程,这其中不仅仅使我们获得了很多知识,更重要的是对科学精神和科学发现的理解更深刻了.同学们,请你们认真阅读,暂时不懂的地方可以越过,看完之后有什么感想?请你通过回复告诉我,或者发电子邮件至zhousp-fx@263.net
  光的本性认识历史
  ——摘自《重要物理概念规律的形成与发展》乔际平 刘甲珉编著
  人们对光的本性的认识经历了漫长的岁月,大约在十七世纪形成了两种对立的学说,即光的波动说与微粒说,但在以后很长一段时期内,微粒说占据统治地位,而波动说几乎消声匿迹.历史发展到十九世纪初,由于一连串的发现和众多科学家的努力使光的波动说再次复兴,并压倒了微粒说.二十世纪初,爱因斯坦提出了光的量子说,康普顿证实了光的粒子性,使人们对光的本性又有全新的认识,乃至到今天,人们认识到光具有波粒二象性.人们对光的本性的认识过程可概括为:
  光的波动说→光的微粒说→光的波动说→光的量子说→光的粒子说→光的波粒二象性.
  一、光的波动说的形成
  十七世纪形成了关于光的本性的两种学说,历史上主张光的波动说有笛卡儿、胡克、惠更斯等人.
  1.笛卡儿借助于以太来说明光的传播过程
  十七世纪上半叶,法国物理学家笛卡儿(1596—1650)曾用他提出的“以太”假说来说明光的本性.他用以太中的压力来说明光的传播过程.如果一物体被加热并发光,这意味着,物体的粒子处于运动状态并给予这一媒质的粒子以压力.这一媒质被称为以太,它充满了整个空间.压力向四面八方传播,在达到人眼后引起人的感觉,他把人们对物体的视觉比喻为盲人用手杖来感知物体的存在,他把光的颜色设想为起源于以太粒子的不同的转动速度,转得快的引起红色的感觉,转得慢的对应于黄色,最慢的是绿色和蓝色.他的主张是强调媒质的影响,以“作用”的传播为出发点,特别是以接触作用或近距作用为出发点,把光看作压力或者脉动运动的传播,因而笛卡儿被认为是光的波动说的创始人.
  2.胡克把光波与水波类比指出光的波动性
  胡克在1665 年出版的《显微术》一书,明确提出光是一种振动.他以钻石受到摩擦、打击或加热时在黑暗中发光的现象为例,认为发光体的一部分处在或多或少的运动中,又因金刚石很硬,肯定它是一种很短的振动.在分析光的传播时,胡克提到了光速的大小是有限的,并认为“在一种均匀媒介中,这一运动在各个方向都以相等的速度传播”,因此发光体的每一个振动形成一个球面向四周扩展,犹如石子投入水中所形成的波那样,而射线和波面交成直角.胡克还把波面的思想用于对光的折射现象的研究,提出了薄膜颜色的成因是由于两个界面反射、折射后所形成的强弱不同、超前落后不一致的两束光的叠合.这里已包含着波阵面、干涉等不少波动说的基本概念.
  3.惠更斯把光波与声波类比提出惠更斯原理,发展了光的波动学说
  荷兰物理学家惠更斯(1629—1695)在十七世纪七十年代,从事光的波动论的研究,1690 年出版了他的著名著作《论光》.惠更斯从光的产生和它所引起的作用两方面来说明光是一种运动.他的研究发现:“光线向各个方面以极高的速度传播,并且光线从不同的地点出发时,光线在传播中相互穿过而互不影响.当我们看到发光的物体时,决不会是由于该物体有任何物质传输到我们这里,好象一粒子弹或一只箭穿过空气那样”.从这里可看出,惠更斯从光束在传播中相互交叉时并不彼此妨碍的事实得出上述结论的.他把光的传播方式和声音在空气中的传播作比较,明确地指出了光是一种波动的思想.他又根据光速的有限性论证了光是从媒质的一部分依次向其他部分传播的一种运动,他认为光和声波、水波一样是一种球面波.惠更斯不但从现象上解释各种光的波动现象,而且试图从理论的高度总结出普遍的规律,他提出了著名的惠更斯原理.他叙述说:“关于这些波的形成过程还必须指出,当光在物质中传播时,物质的每一个粒子都应当把它的运动不仅传递给位于它与发光点的连线上近旁的粒子,它也必然把运动传递给所有与它接触并阻碍它运动的其它粒子.因此,在粒子的周围就应当形成波,而该粒子则是波的中心”.运用这个次波原理,惠更斯不但成功地解释了反射和折射定律,而且还解释了方解石的双折射现象.惠更斯没有给波动过程以严密的数学描述.没有提到波长的概念,他的次波包络面也没有从一定位相的迭加所造成的强度分布来考虑,只不过是光传播的一种几何的定性说明,故仍旧停留在几何光学的观念范围内.由于他认为光波和声波一样是一种纵波,因此他无法解释光的偏振现象;而且惠更斯所谓的波动实际上只是一种脉冲而不是一个波列,也没有建立起波动过程的周期性概念,因此,用他的理论无法解释颜色的起源,也不能说明干涉、衍射等有关光的本质的现象.总之,十七世纪,由笛卡儿、胡克、惠更斯等人所建立起的光的波动学说还是很不成熟的.
  二、光的微粒说的形成
  在光的波动学说形成过程中,关于光的本性另一种对立学说——光的微粒说也逐步建立起来了.
  1.牛顿在对光的色散现象的研究中提出了光的微粒说.牛顿在光学研究中,从光的色散现象中得出结论;单色的光束是不能再改变的.它们可以说是光的“原子”,就象物质的原子一样.支持光的微粒说的人们认为:单色光是由单一粒子构成的,白光则是各种光粒子的混合物,棱镜只是将它们分类,使各种光粒子有不同的偏转角度.因而牛顿及其追随者把色散现象看作是微粒说的一个证明.而在当时很不完善的波动说却很难解释光的色散问题.惠更斯虽然他知道牛顿的这一研究成果,但在他的著作中却避开而不谈这一问题.
  2.牛顿根据光的直线传播性质,提出光是微粒流的理论.牛顿在1704年出版的《光学》一书中,根据光的直线传播性质,提出了光是微粒流的理论.他认为光的直线传播是由于这些微粒从光源飞出来,在真空或均匀物质内由于惯性而作匀速直线运动.他说:“光线是否是发光物质发射出来的很小的物体?因为这样一些物体能够直线穿过均匀媒质而不弯曲到影子区域里去,这正是光线的本性.”
  3.牛顿在解释光的折射定律、衍射、干涉等现象的过程中进一步发展和完善了光的微粒说.牛顿在分析折射定律时,坚持微粒说的观点,认为光在光密媒质中的速度大于光疏媒质中的速度(实际上这是一种错误观点),但这在当时无法用实验加以检验的.牛顿解释光的衍射现象时认为,当光粒子通过障碍的边缘时,由于两者之间有引力作用,使光束进入了几何阴影区.这种解释在当时曾被多数人所接受.牛顿在解释光的干涉现象时,认为当光投射到一个物体上的时候,可能激起物体中以太粒子的振动,就好像投入水中的石块在水面上激起波纹一样.他甚至设想可能正是由于这种波依次地赶过光线而引起干涉现象.在解释薄膜干涉时,牛顿已接触到光的周期性概念.从以上可看出,牛顿对光的本性的看法基本上是倾向于微粒说的观点,但其中也包含一些波动性的观点.而牛顿当时的支持和崇拜者们却把牛顿推举为微粒说的代表.
  三、光的波动说与微粒说的斗争中,微粒说取得初步胜利,占统治地位.
  当光的波动说和微粒说初步形成后,这两种对立的观点进行了激烈地争论和斗争.以惠更斯等为代表的光的波动说和以牛顿为代表的光的微粒说各持己见.它们都能解释一些光学现象.但也各有一些局限性,限于当时的条件有时也难以明确判断其正误.如按照微粒说,可推导出光的折射定律为
  sini/sinr=v2/v1
  式中i 为入射角、r 为折射角、n 为折射率.v1 和v2 分别为第一种媒质与第二种媒质中的光速.由疏媒质进入光密媒质时v2>v1,即光疏媒质中的光速v1 小于光密媒质中的光速v2.而按波动说,惠更斯推导出
  sini/sinr=v1/v2 则v2

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(四):

(2014•西城区二模)在平面直角坐标系xOy中,对于⊙A上一点B及⊙A外一点P,给出如下定义:若直线PB与 x轴有公共点(记作M),则称直线PB为⊙A的“x关联直线”,记作lPBM
(1)已知⊙O是以原点为圆心,1为半径的圆,点P(0,2),
①直线l1:y=2,直线l2:y=x+2,直线l3y=
3
x+2

(1)①l3,l4
分析如下:

根据题意,如图1,l1,l2与⊙O没有交点,
对l3,过点O作OB⊥AC于B,
∵A(0,2),C(

2
3
3
,0),
∴AO=2,C0=
2
3
3

∴根据勾股定理,AC=
4
3
3

∴根据面积相等,OB=
AO•OC
AC
=1,
∵⊙O半径为1,
∴AC切⊙O于B,
∴l3是⊙O的“x关联直线”.
对l4,显然与⊙O有两个交点,故l4是⊙O的“x关联直线”.
综上所述,l3,l4是⊙O的“x关联直线”.

xM
2
3
3

分析如下:

如图2,PM与⊙O相切于B点时,M的横坐标xM最大,连接OB,则OB⊥PM,
在Rt△OPB中,
∵PO=2,OB=1,
∴∠OPB=30°,
∴OM=tan∠OPB•OP=
3
3
•2
=
2
3
3

所以点M的横坐标xM

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(五):

轨迹方程的几种常用求法
常用的一些轨迹方程求法主要要与圆有关的谢谢了

求动点的轨迹方程要根据题设条件灵活地选择方法.常用的方法有两大类,一类是直接求法,包括利用圆锥曲线的定义等;另一类是间接求法,主要包括相关点法和参数法.
  一、 直接法
  一般情况下,动点在运动时,总是满足一定的条件的(即动中有静,变中有不变),可设动点的坐标为(x,y),然后选择适当的公式(如两点间的距离公式,点到直线的距离公式,两点连线的斜率公式,两直线(向量)的夹角公式,定比分点坐标公式,三角形面积公式等),或一些包含等量关系的定理、定义等,将题设条件转化成x,y之间的关系式(等式),从而得到动点的轨迹方程.这种求轨迹方程的方法称为直接法.
  例1 已知定点a(-1,0),b(2,0),动点m满足2∠mab=∠mba,求点m的轨迹方程.
  解析 直接设点m为(x,y),先将2∠mab=∠mba转化成直线ma,mb的斜率的关系式,便可得点m的轨迹方程.
  图1
  如图1,设∠mab=α,则∠mba=2α,显然0≤α<90°.
  (1) 当2α≠90°时,
  若m点在x轴上方,
  则有tanα=kma=yx+1,tan(π-2α)=kmb=yx-2.
  若点m在x轴下方,则有tan(π-α)=kma=yx+1,tan2α=kmb=yx-2.
  于是总有-yx-2=2y1+x1-y2(1+x)2,注意到|ma|>|mb|,可得x2-y23=1(x≥1).
  若点m在x轴上,则点m为线段ab上的点,所以有y=0(-1<x<2).
  (2) 当2α=90°时,△mab为等腰直角三角形,点m为(2,±3).
  综上,点m的轨迹方程为x2-y23=1(x≥1)或y=0(-1<x<2=.
  二、 定义法
  若动点在运动时满足的条件符合某种已知曲线的定义,则可以设出其轨迹的标准方程,然后利用待定系数法求出其轨迹方程.这种求轨迹方程的方法称为定义法,利用定义法求轨迹方程要熟知常见曲线的定义、特征.
  例2 设动点p到点a(-1,0)和b(1,0)的距离分别为d1,d2(d1d2≠0),∠apb=2θ.若存在常数λ(0<λ<1),使得d1d2sin2θ=λ恒成立.
  证明:动点p的轨迹c为双曲线,并求出c的方程.
  图2
  解析 如图2,在△pab中,|ab|=2.
  由余弦定理,可得22=d21+d22-2d1d2cos2θ,即4=(d1-d2)2+4d1d2sin2θ,
  又d1d2sin2θ=λ(常数),0<λ<1,
  则有|d1-d2|
  =4-4d1d2sin2θ=21-λ(常数)<2=|ab|,
  所以点p的轨迹c是以a,b为焦点,实轴长2a=21-λ的双曲线,
  从而a=1-λ,c=1,故b2=c2-a2=λ,
  则c的方程为x21-λ-y2λ=1.
  三、 代入法
  若所求轨迹上的动点p(x,y)与另一个已知轨迹(曲线)c:f(x,y)=0上的动点q(x1,y1)存在着某种联系,则可以把点q的坐标用点p的坐标表示出来,然后代入曲线c的方程f(x,y)=0中并化简,即得动点p轨迹方程.这种求轨迹方程的方法叫做代入法(又称相关点法).
  例3 已知定点a(4,0)和曲线c:x2+y2=4上的动点b,点p分ab之比为2∶1,求动点p的轨迹方程.
  解析 要求动点p(x,y)的轨迹方程,即要建立关于p的坐标x,y的等量关系,而直接建立x,y的等量关系十分困难,但可以先寻找动点b(x0,y0)的坐标x0,y0之间的关系,再利用已知的p与b之间的关系(即x,y与x0,y0之间关系)得到关于x,y的方程.
  设动点p为(x,y),b为(x0,y0).
  因为ap=2pb,所以x=4+2x01+2,y=2y01+2,所以x0=3x-42,y0=3y2.
  又因为点b在曲线c上,所以3x-422+94y2=4,即x-432+y2=169.
  所以点p的轨迹方程为x-432+y2=169.
  点评 代入法的主要步骤:
  (1) 设所求轨迹上的任意一点为p(x,y),相对应的已知曲线上的点为q(x1,y1);
  (2) 建立关系式x1=g(x,y),y1=h(x,y);
  (3) 将这两上式子代入已知曲线方程中并化简,即得所求轨迹的方程.
  四、 参数法
  根据题设条件,用一个参数分别表示出动点(x,y)的坐标x和y,或列出两个含同一个参数的动点(x,y)的坐标x和y之间的关系式,这样就间接地把x和y联系起来了,然后联立这两个等式并消去参数,即可得到动点的轨迹方程.这种求轨迹的方法称为参数法.
  例4 已知动点m 在曲线c:13x2+13y2-15x-36y=0上,点n在射线om上,且|om|·|on|=12,求动点n的轨迹方程.
  解析 点n在射线om上,而在同一条以坐标原点为端点的射线上的任意两点(x1,y1),(x2,y2)的坐标的关系为x1x2=y1y2=k,k为常数且k>0,故可采用参数法求点n的轨迹方程.
  设n为(x,y),则m为(kx,ky),k>0.
  因为|om|·|on|=12,所以k2(x2+y2)·x2+y2=12,
  所以k(x2+y2)=12.
  又点m在曲线c上,所以13k2x2+13k2y2-15kx-36ky=0.
  由以上两式消去k,得5x+12y-52=0,
  所以点n的轨迹方程为5x+12y-52=0.
  点评 用参数法求轨迹方程的步骤为:先引进参数,用此参数分别表示动点的横、纵坐标x,y;再消去参数,得到关于x,y的方程,即为所求的轨迹方程.注意参数的取值范围对动点的坐标x和y的取值范围的影响.
  另外,求动点的轨迹方程时,还应注意下面几点:
  (1) 坐标系要建立得适当.这样可以使运算过程简单,所得到的方程也比较简单.
  (2) 根据动点所要满足的条件列出方程是最重要的一环.要做好这一步,应先认真分析题设条件,综合利用平面几何知识,列出几何关系(等式),再利用解析几何中的一些基本概念、公式、定理等将几何关系(等式)坐标化.
  (3) 化简所求得的轨迹方程时,如果所做的变形不是该方程的同解变形,那么必须注意在该变形过程中是增加了方程的解,还是减少了方程的解,并在所得的方程中删去或补上相应的点,这时一般不要求写出证明过程.

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(六):

证明:三角形内任意一点到两个顶点的距离和小于这两个顶点到第三个顶点的距离和.

①把三角形内的一点和三个角连接 ②反向延长三条连线 ③每条连线取在连线外的另外两个顶点中任意一个顶点作高,每个顶点只作一条高(这步有点难理解,不过画图出来即可) ④由勾股定理可知直角三角形斜边大于直角边,三角形三边都分别大于三条连线,即可证命题.

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(七):

跪求成立的初中数学定理逆定理成立例:直角三角形中30°所对的直角边等斜边的一半,逆:
直角三角形中直角边等斜边一半,那么该直角边所对的角为30°.
越多越好,正确率高点
【(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:】

三角形三条边的关系
定理:三角形两边的和大于第三边
推论:三角形两边的差小于第三边
三角形内角和
三角形内角和定理 三角形三个内角的和等于180°
推论1 直角三角形的两个锐角互余
推论2 三角形的一个外角等于和它不相邻的两个内角和
推论3 三角形的一个外角大雨任何一个和它不相邻的内角
角的平分线
性质定理 在角的平分线上的点到这个角的两边的距离相等
几何语言:
∵OC是∠AOB的角平分线(或者∠AOC=∠BOC)
PE⊥OA,PF⊥OB
点P在OC上
∴PE=PF(角平分线性质定理)
判定定理 到一个角的两边的距离相等的点,在这个角的平分线上
几何语言:
∵PE⊥OA,PF⊥OB
PE=PF
∴点P在∠AOB的角平分线上(角平分线判定定理)
等腰三角形的性质
等腰三角形的性质定理 等腰三角形的两底角相等
几何语言:
∵AB=AC
∴∠B=∠C(等边对等角)
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
几何语言:
(1)∵AB=AC,BD=DC
∴∠1=∠2,AD⊥BC(等腰三角形顶角的平分线垂直平分底边)
(2)∵AB=AC,∠1=∠2
∴AD⊥BC,BD=DC(等腰三角形顶角的平分线垂直平分底边)
(3)∵AB=AC,AD⊥BC
∴∠1=∠2,BD=DC(等腰三角形顶角的平分线垂直平分底边)
推论2 等边三角形的各角都相等,并且每一个角等于60°
几何语言:
∵AB=AC=BC
∴∠A=∠B=∠C=60°(等边三角形的各角都相等,并且每一个角都等于60°)
等腰三角形的判定
判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等
几何语言:
∵∠B=∠C
∴AB=AC(等角对等边)
推论1 三个角都相等的三角形是等边三角形
几何语言:
∵∠A=∠B=∠C
∴AB=AC=BC(三个角都相等的三角形是等边三角形)
推论2 有一个角等于60°的等腰三角形是等边三角形
几何语言:
∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)
∴AB=AC=BC(有一个角等于60°的等腰三角形是等边三角形)
推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
几何语言:
∵∠C=90°,∠B=30°
∴BC= AB或者AB=2BC(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)
线段的垂直平分线
定理 线段垂直平分线上的点和这条线段两个端点的距离相等
几何语言:
∵MN⊥AB于C,AB=BC,(MN垂直平分AB)
点P为MN上任一点
∴PA=PB(线段垂直平分线性质)
逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
几何语言:
∵PA=PB
∴点P在线段AB的垂直平分线上(线段垂直平分线判定)
轴对称和轴对称图形
定理1 关于某条之间对称的两个图形是全等形
定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上
逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称
勾股定理
勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即
a2 + b2 = c2
勾股定理的逆定理
勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形
四边形
定理 任意四边形的内角和等于360°
多边形内角和
定理 多边形内角和定理n边形的内角的和等于(n - 2)·180°
推论 任意多边形的外角和等于360°
平行四边形及其性质
性质定理1 平行四边形的对角相等
性质定理2 平行四边形的对边相等
推论 夹在两条平行线间的平行线段相等
性质定理3 平行四边形的对角线互相平分
几何语言:
∵四边形ABCD是平行四边形
∴AD‖BC,AB‖CD(平行四边形的对角相等)
∠A=∠C,∠B=∠D(平行四边形的对边相等)
AO=CO,BO=DO(平行四边形的对角线互相平分)
平行四边形的判定
判定定理1 两组对边分别平行的四边形是平行四边形
几何语言:
∵AD‖BC,AB‖CD
∴四边形ABCD是平行四边形
(两组对边分别平行的四边形是平行四边形)
判定定理2 两组对角分别相等的四边形是平行四边形
几何语言:
∵∠A=∠C,∠B=∠D
∴四边形ABCD是平行四边形
(两组对角分别相等的四边形是平行四边形)
判定定理3 两组对边分别相等的四边形是平行四边形
几何语言:
∵AD=BC,AB=CD
∴四边形ABCD是平行四边形
(两组对边分别相等的四边形是平行四边形)
判定定理4 对角线互相平分的四边形是平行四边形
几何语言:
∵AO=CO,BO=DO
∴四边形ABCD是平行四边形
(对角线互相平分的四边形是平行四边形)
判定定理5 一组对边平行且相等的四边形是平行四边形
几何语言:
∵AD‖BC,AD=BC
∴四边形ABCD是平行四边形
(一组对边平行且相等的四边形是平行四边形)
矩形
性质定理1 矩形的四个角都是直角
性质定理2 矩形的对角线相等
几何语言:
∵四边形ABCD是矩形
∴AC=BD(矩形的对角线相等)
∠A=∠B=∠C=∠D=90°(矩形的四个角都是直角)
推论 直角三角形斜边上的中线等于斜边的一半
几何语言:
∵△ABC为直角三角形,AO=OC
∴BO= AC(直角三角形斜边上的中线等于斜边的一半)
判定定理1 有三个角是直角的四边形是矩形
几何语言:
∵∠A=∠B=∠C=90°
∴四边形ABCD是矩形(有三个角是直角的四边形是矩形)
判定定理2 对角线相等的平行四边形是矩形
几何语言:
∵AC=BD
∴四边形ABCD是矩形(对角线相等的平行四边形是矩形)
菱形
性质定理1 菱形的四条边都相等
性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
几何语言:
∵四边形ABCD是菱形
∴AB=BC=CD=AD(菱形的四条边都相等)
AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC
(菱形的对角线互相垂直,并且每一条对角线平分一组对角)
判定定理1 四边都相等的四边形是菱形
几何语言:
∵AB=BC=CD=AD
∴四边形ABCD是菱形(四边都相等的四边形是菱形)
判定定理2 对角线互相垂直的平行四边形是菱形
几何语言:
∵AC⊥BD,AO=CO,BO=DO
∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形)
正方形
性质定理1 正方形的四个角都是直角,四条边都相等
性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
中心对称和中心对称图形
定理1 关于中心对称的两个图形是全等形
定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
梯形
等腰梯形性质定理 等腰梯形在同一底上的两个角相等
几何语言:
∵四边形ABCD是等腰梯形
∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的两个角相等)
等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
几何语言:
∵∠A=∠B,∠C=∠D
∴四边形ABCD是等腰梯形(在同一底上的两个角相等的梯形是等腰梯形)
三角形、梯形中位线
三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半
几何语言:
∵EF是三角形的中位线
∴EF= AB(三角形中位线定理)
梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半
几何语言:
∵EF是梯形的中位线
∴EF= (AB+CD)(梯形中位线定理)
比例线段
1、 比例的基本性质
如果a∶b=c∶d,那么ad=bc
2、 合比性质
3、 等比性质
平行线分线段成比例定理
平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
几何语言:
∵l‖p‖a
(三条平行线截两条直线,所得的对应线段成比例)
推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边
垂直于弦的直径
垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧
几何语言:
∵OC⊥AB,OC过圆心
(垂径定理)
推论1
(1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
几何语言:
∵OC⊥AB,AC=BC,AB不是直径
(平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)
(2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧
几何语言:
∵AC=BC,OC过圆心
(弦的垂直平分线过圆心,并且平分弦所对的两条弧)
(3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
几何语言:
(平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧)
推论2 圆的两条平分弦所夹的弧相等
几何语言:∵AB‖CD
圆心角、弧、弦、弦心距之间的关系
定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等
推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等
圆周角
定理 一条弧所对的圆周角等于它所对的圆心角的一半
推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角
推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
圆的内接四边形
定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
几何语言:
∵四边形ABCD是⊙O的内接四边形
∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE
切线的判定和性质
切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
几何语言:∵l ⊥OA,点A在⊙O上
∴直线l是⊙O的切线(切线判定定理)
切线的性质定理 圆的切线垂直于经过切点半径
几何语言:∵OA是⊙O的半径,直线l切⊙O于点A
∴l ⊥OA(切线性质定理)
推论1 经过圆心且垂直于切线的直径必经过切点
推论2 经过切点且垂直于切线的直线必经过圆心
切线长定理
定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
几何语言:∵弦PB、PD切⊙O于A、C两点
∴PA=PC,∠APO=∠CPO(切线长定理)
弦切角
弦切角定理 弦切角等于它所夹的弧对的圆周角
几何语言:∵∠BCN所夹的是 ,∠A所对的是
∴∠BCN=∠A
推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 , =
∴∠BCN=∠ACM
和圆有关的比例线段
相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等
几何语言:∵弦AB、CD交于点P
∴PA·PB=PC·PD(相交弦定理)
推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
几何语言:∵AB是直径,CD⊥AB于点P
∴PC2=PA·PB(相交弦定理推论)
切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项
几何语言:∵PT切⊙O于点T,PBA是⊙O的割线
∴PT2=PA·PB(切割线定理)
推论 从圆外一点因圆的两条割线,这一点到每条割线与圆的焦点的两条线段长的积相等
几何语言:∵PBA、PDC是⊙O的割线
∴PT2=PA·PB(切割线定理推论)
【实数的分类】
【自然数】 表示物体个数的1、2、3、4···等都称为自然数
【质数与合数】 一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数.一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数.
【相反数】 只有符号不同的两个实数,其中一个叫做另一个的相反数.零的相反数是零.
【绝对值】 一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零.
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离.
【倒数】 1除以一个非零实数的商叫这个实数的倒数.零没有倒数.
【完全平方数】 如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数.
【方根】 如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根.
【开方】 求一数的方根的运算叫做开方.
【算术根】 正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根.
【代数式】 用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式.
【代数式的值】 用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值.
【代数式的分类】
【有理式】 只含有加、减、乘、除和乘方运算的代数式叫有理式
【无理式】 根号下含有字母的代数式叫做无理式
【整式】 没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式
【分式】 除式中含字母的有理式叫分式
有理数的运算律】
【等式的性质】
【乘法公式】
【因式分解】
【方程】 方 程 含有未知数的等式叫做方程.
方程的解 在未知数允许值范围内,能使方程两边相等的未知数的值叫做方程的解.
解 方 程 在指定范围内求出方程所有解,或者确定方程无解的过程,叫做解方程.
【一元一次方程】 一元一次方程:只含有一个未知数且未知数的次数是一次的整式方程叫做一元一次方程
【一元二次方程】
直 线
(不定义)直线向两方无限延伸,它无端点.
射 线
在直线上某一点旁的部分.射线只有一个端点.
线 段
直线上两点间的部分.它有两个端点.
垂 线
如果两条直线相交成直角,那么称这两条直线互相垂直.其中一条叫另一条的垂线,它们的交点叫垂足.
斜 线
如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线.
点到直线的距离
从直线外一点到这条直线的垂线段的长度,叫做点到直线距离.
线段的垂直平分线
定理:线段的垂直平分线上的点和这条线段两个端点的距离相等.
平 行 线
在同一平面内不相交的两条直线叫做平行线.
平行线公理及推论
经过直线外一点,有一条而且只有一条直线和这条直线平行.
平行于同一条直线的两条直线平行.
角 的 定 义
有公共点的两条射线所组成的图形,叫做角
角 的 分 类
周角:3600 平角:1800 直角:900 锐角:00

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(八):

求解一个几何问题或者三元二次方程组
空间 两点A(X1,Y1,Z1)和B(X3,Y3,Z3)绕另外一点O(X0,Y0,ZO)同时做同方向的圆周运动A到A1(X,Y,Z)点B到B1(X4,Y4,Z4)
根据三角形的相似性是不是可以化得下面的4条等式
等式1
(X-X0)^2+(Y-Y0)^2+(Z-Z0)^2=(X1-X0)^2+(Y1-Y0)^2+(Z1-Z0)^2
等式2
(X4-X)^2+(Y4-Y)^2+(Z4-Z)^2=(X3-X1)^2+(Y3-Y1)^2+(Z3-Z1)^2
等式3
[(X-X1)^2+(Y-Y1)^2+(Z-Z1)^2]/(X4-X3)^2+(Y4-Y3)^2+(Z4-Z3)^2=[(X1-X0)^2+(Y1-Y0)^2+(Z1-Z0)^2]/(X3-X0)^2+(Y3-Y0)^2+(Z3-Z0)^2
等式4
[(X+X1-2x0)^2+(Y+Y1-2y0)^2+(Z+Z1-2z0)^2]/(X4+X3-2x0)^2+(Y4+Y3-2y0)^2+(Z4+Z3-2Z0)^2=[(X1-X0)^2+(Y1-Y0)^2+(Z1-Z0)^2]/(X3-X0)^2+(Y3-Y0)^2+(Z3-Z0)^2
如果成立请帮求解X,Y,Z

晕,打了我10来个小时·~·#~!·谢谢大家给面子看啊~
|原创|复习
一、数与代数
A:数与式:1:有理数
有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.
②任何一个有理数都可以用数轴上的一个点来表示.
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.
④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0.两个负数比较大小,绝对值大的反而小.
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加不变.
减法: 减去一个数,等于加上这个数的相反数.
乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘得0.③乘积为1的两个有理数互为倒数.
除法:①除以一个数等于乘以一个数的倒数.②0不能作除数.
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数.
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的.
2:实数
无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数.
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数/0的立方根是0/负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数.
实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示.
3:代数式
代数式:单独一个数或者一个字母也是代数式.
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项.②把同类项合并成一项就叫做合并同类项.③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变.
4:整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式.②一个单项式中,所有字母的指数和叫做这个单项式的次数.③一个多项式中,次数最高的项的次数叫做这个多项式的次数.
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项.
幂的运算:AM.AN=A(M+N) (AM)N=AMN (AB)N=AN.BN 除法一样.
A0=1,A-P=1/AP
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式
方法:提公因式法/运用公式法/分组分解法/十字相乘法
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0.②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变.
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
除法:除以一个分式等于乘以这个分式的倒数.
加减法:①同分母的分式相加减,分母不变,把分子相加减.②异分母的分式先通分,化为同分母的分式,再加减.
分式方程:①分母中含有未知数的方程叫分式方程.②使方程的分母为0的解称为原方程的增根.
B:方程与不等式
1:方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程.②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式.
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1.
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组.
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解.
解二元一次方程组的方法:代入消元法/加减消元法.
2:不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式.②不等式的两边都加上或减去同一个整式,不等号的方向不变.③不等式的两边都乘以或者除以一个正数,不等号方向不变.④不等式的两边都乘以或除以同一个负数,不等号方向相反.
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解.②一个含有未知数的不等式的所有解,组成这个不等式的解集.③求不等式解集的过程叫做解不等式.
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式.
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.③求不等式组解集的过程,叫做解不等式组.
3:函数
变量:因变量,自变量.
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量.
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数.②当B=0时,称Y是X的正比例函数.
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.②正比例函数Y=KX的图象是经过原点的一条直线.③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限.④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少.
二、空间与图形
A:图形的认识:1:点,线,面
点,线,面:①图形是由点,线,面构成的.②面与面相交得线,线与线相交得点.③点动成线,线动成面,面动成体.
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体.②N棱柱就是底面图形有N条边的棱柱.
截一个几何体:用一个平面去截一个图形,截出的面叫做截面.
3视图:主视图,左视图,俯视图.
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形.
弧,扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.②圆可以分割成若干个扇形.
2:角
线:①线段有两个端点.②将线段向一个方向无限延长就形成了射线.射线只有一个端点.③将线段的两端无限延长就形成了直线.直线没有端点.④经过两点有且只有一条直线.
比较长短:①两点之间的所有连线中,线段最短.②两点之间线段的长度,叫做这两点之间的距离.
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点.②一度的1/60是一分,一分的1/60是一秒.
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的.②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.始边继续旋转,当他又和始边重合时,所成的角叫做周角.③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.
平行:①同一平面内,不相交的两条直线叫做平行线.②经过直线外一点,有且只有一条直线与这条直线平行.③如果两条直线都与第3条直线平行,那么这两条直线互相平行.
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直.②互相垂直的两条直线的交点叫做垂足.③平面内,过一点有且只有一条直线与已知直线垂直.
3:相交线与平行线
角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角.②同角或等角的余角/补角相等.③对顶角相等.④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然.
4:三角形
三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.②三角形任意两边之和大于第三边.三角形任意两边之差小于第三边.③三角形三个内角的和等于180度.④三角形分锐角三角形/直角三角形/钝角三角形.⑤直角三角形的两个锐角互余.⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线.⑧三角形的三条角平分线交于一点,三条中线交于一点.⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.⑩三角形的三条高所在的直线交于一点.
图形的全等:全等图形的形状和大小都相同.两个能够重合的图形叫全等图形.
全等三角形:①全等三角形的对应边/角相等.②条件:SSS/AAS/ASA/SAS/HL.
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然.
5:四边形
平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形.②平行四边形不相邻的两个顶点连成的线段叫他的对角线.③平行四边形的对边/对角相等.④平行四边形的对角线互相平分.
平行四边形的判定条件:两条对角线互相平分的四边形/一组对边平行且相等的四边形/两组对边分别相等的四边形/定义.
菱形:①一组邻边相等的平行四边形是菱形.②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角.③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形.
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形.②矩形的对角线相等,四个角都是直角.③对角线相等的平行四边形是矩形.④正方形具有平行四边形,矩形,菱形的一切性质.⑤一组邻边相等的矩形是正方形.
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形.②两条腰相等的梯形叫等腰梯形.③一条腰和底垂直的梯形叫做直角梯形.④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然.
多边形:①N边形的内角和等于(N-2)180度.②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平面图形的密铺:三角形,四边形和正六边形可以密铺.
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心.②中心对称图形上的每一对对应点所连成的线段都被对称中心平分.
B:图形与变换:1:图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.
轴对称图形:①角的平分线上的点到这个角的两边的距离相等.②线段垂直平分线上的点到这条线段两个端点的距离相等.③等腰三角形的“三线合一”.
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等.
2:图形的平移和旋转
平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移.②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转.②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.
3:图形的相似
比:①A/B=C/D,那么AD=BC,反之亦然.②A/B=C/D,那么A土B/B=C土D/D.③A/B=C/D=.=M/N,
那么A+C+.+M/B+D+.N=A/B.
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2).
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形.②相似多边形对应边的比叫做相似比.
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形.②条件:AA/SSS/SAS.
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比.②相似多边形的周长比等于相似比,面积比等于相似比的平方.
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.②位似图形上任意一对对应点到位似中心的距离之比等于位似比.
C:图形的坐标
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点.他们分4个象限.XA,YB记作(A,B).
D:证明
定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义.②对事情进行判断的句子叫做命题(分真命题与假命题).③每个命题是由条件和结论两部分组成.④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例.
公理:①公认的真命题叫做公理.②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理.③同位角相等,两直线平行,反之亦然;SAS/ASA/SSS,反之亦然;同旁内角互补,两直线;平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角.④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论.
三、统计与概率
1:统计
科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N是正整数.
扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比.
各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比.
近似数字和有效数字:①测量的结果都是近似的.②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位.③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字.
平均数:对于N个数X1,X2.XN,我们把1/N(X1+X2+.+XN)叫做这个N个数的算术平均数,记为X(上边一横).
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数.
中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.②一组数据中出现次数最大的那个数据叫做这个组数据的众数.③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义.
调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体.②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本.③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确.为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性.
频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率.②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图.
数据的波动:①极差是指一组数据中最大数据与最小数据的差.②方差是各个数据与平均数之差的平方的平均数.③标准差就是方差的算术平方根.④一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定.
2:概率
可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的.②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件.③一般来说,不确定事件发生的可能性是有大小的.
概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性.②游戏对双方公平是指双方获胜的可能性相同.③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1.

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(九):

在方格纸中画出符合要求的等腰三角形各两个:(1)各顶点都在格点上,且有两个顶点在方格的同一条线上;
(2)各顶点都在格点上,且三个顶点都不在方格的同一条线上


如图,C满足条件(1)

A和B满足条件(2)

(单选题)在Photoshop中可以创建路径,通常两个直角点之间的连线称为:(十):

在平面直角坐标系中,
过一点分别作坐标轴的垂线,若与坐标轴围成长方形的周长与面积相等,则这个点叫做和谐点.
(1)判断点(1,2),(4,4)MN是否为和谐点,并说明理由; (2)请你在第二象限找出一个和谐点C,则C的坐标可以是(_____,10); 在第三象限找出一个和谐点D,则D的坐标可以是(-14,________);

易知P点到直线y=x的距离是1,直线与x轴的夹角为45度.过P点做平行于此直线的平行线,交y轴于点q,平行线的函数为y=x+m,q点到直线y=x的距离也为1.过点q做垂直于直线y=x的线段,交与点n.qn=1,三角形oqn为直角等腰三角形.所以oq=√2.所以直线qp的函数为y=x+√2,所以p点坐标为(2,2+√2),a=2+√2.
以上回答你满意么?

本文来源:http://www.zhuodaoren.com/juqing833886/

推荐访问:3dmax两个点连线 空间六个点两两连线
扩展阅读文章
热门阅读文章