Dyer

来源:百科 时间:2016-07-21 11:38:22 阅读:

【www.zhuodaoren.com--百科】

Dyer(一)
告别犹豫不决的3个秘诀

告别犹豫不决的3个秘诀

如果你发现自己进入无法做出决定的“犹豫不决”的麻痹状态----这里有3个秘诀帮助你从思维的泥潭拔出来,让你采取清醒的,果断的,有力的行动。

步骤1:搞清楚你为什么会拖延,给拖延的原因取个名字,承认它并藐视它。

我总是在头脑清醒时做出重要的决定---,如果你感觉你必须做出决定,我的秘方是“躺在这个需要做决定的事情上睡觉”(怎么做:当然是:在“思考需要做决定的事情”的过程中睡着了)。但是,如果有一个重大的决定要做出,你会发现自己花费了24个小时也无法做出决定。有可能你仅仅是在拖延。

为什么会这样呢?

通常只有一个原因:恐惧失败。

恐惧失败可能是内在的原因也可能是外在的原因----

因为你担心你会以失败而告终,你会害怕做出错误的决定?你会害怕会令其他人失望?你会害怕失去那种韦恩·W·戴尔(WayneDyer《你的误区》的作者)称之为“别人的赞许和好感”的东西?

搞清楚那一种类型的恐惧是真正妨碍你做出决定得原因。这个不会花费太长的时间,然后,给它取个名字,然后盯着它的脸看,然后对它说:

哈喽,“恐惧别人会如何想”----给恐惧的东西起的名字,我看到你了,感谢你从我旁边经过,但你无法阻止我采取行动和继续前进。

步骤2:重新定义你对失败的恐惧。

我的的导师:托尼罗宾说:“重新定义失败”这件事情是我喜欢做的。

“实际上,没有那种称之为失败的东西,有的只是结果。你的行动总会产生结果,如果这个结果不是你期待的结果,只要改变你的行动,你就会产生新的结果。”

一旦,你开始认识到不存在什么失败,有的只是结果,做一个决定就变得容易很多。

万一你决定走一条自己想走的道路,但走到了一个不是自己想去的地方,怎么办?

做一个新的决定

采取一些新的行动

【Dyer】

你会产生新的结果。

以这种方式思考如何做决定,生活就变成了选择你自己喜欢的的生活道路这样的自然而然的事情。

步骤3:信任你的直觉的指引

你的大脑是一个神奇的工具。它将你在生活中获得的经验组织成一块信息归档在你的潜意识的深处。当你面临艰难的决定时,它自动地参考这些文档并作出下一步你应该如何行动的推理。

这个潜意识的推理通常展示一种微妙的感觉,你不能看清其中的逻辑关系,它为什么要把你推向一个特定的方向而不是另外一个方向。许多人称它为直觉或者心的感觉。它实际上是你最聪明的顾问。

任何时候,当你在二个决定之间徘徊,犹豫不决,如果你虔诚地向你的内心寻求指引,你总是会发现你的直觉推动你向其中的一个方向移动而不是另一个方向。如果你听从它,它很少会将你导入歧途。

如果你有一个拖延做出的决定,认识到做出决定的另一方面是一个全新的自由王国和可能性-------你停止了拖延,你做出了抉择,你不再犹豫是否要走另一条路,你可以全力以赴地前进,你只需要向前行进(这是一种多么惬意的状态),同时,你仍然拥有很多自由和可能性(如果有需要的话,可以重新调整航向)。

所以,释放你的恐惧,听从你的直觉的指引,采取行动。

你做出更多的决定,采用更多的行动,你会看到更多的结果呈现在你的生活中----如果你创造了一个你不喜欢的结果,非常简单,只要采取一些新的行动并修正你的航向。

生活就是你为了你的自由而创造的东西。

Dyer(二)
世界七大难题

其他难题的解决情况

黎曼假设:很多人攻关,没看到希望 霍奇猜想:进展不大 杨-米尔理论:太难,几乎没人做 P与NP问题:没什么进展 波奇和斯温纳顿—戴雅猜想:有希望破解 纳威厄—斯托克斯方程:离解决相差很远

NP完全问题

概述

NP完全问题是不确定性图灵机在P时间内能解决的问题,是世界七大数学难题之一。 NP完全问题排在百万美元大奖的首位,足见他的显赫地位和无穷魅力。

数学上著名的NP问题,完整的叫法是NP完全问题,也即“NP COMPLETE”问题,简单的写法,是 NP=P?的问题。问题就在这个问号上,到底是NP等于P,还是NP不等于P。证明其中之一,便可以拿百万美元大奖。

这个奖还没有人拿到,也就是说,NP问题到底是Polynomial(意思是多项式的),还是Non-Polynomial,尚无定论。

NP里面的N,不是Non-Polynomial的N,是Non-Deterministic(意思是非确定性的),P代表Polynomial倒是对的。NP就是Non-deterministic Polynomial的问题,也即是多项式复杂程度的非确定性问题。

非确定性问题详解

什么是非确定性问题呢?有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式。

这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。

完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。

人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们於是就猜想,是否这类问题,存在一个确定性算法,可以在指数时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。

解决这个猜想,无非两种可能,一种是找到一个这样的算法,只要针对某个特定NP完全问题找到一个算法,所有这类问题都可以迎刃而解了,因为他们可以转化为同一个问题。另外的一种可能,就是这样的算法是不存在的。那么就要从数学理论上证明它为什么不存在。

前段时间轰动世界的一个数学成果,是几个印度人提出了一个新算法,可以在多项式时间内,证明某个数是或者不是质数,而在这之前,人们认为质数的证明,是个非多项式问题。可见,有些看来好象是非多项式的问题,其实是多项式问题,只是人们一时还不知道它的多项式解而已。

如果判定问题π∈NP,并且对所有其他判定问题 π∈NP,都有π'多项式变换到π(记为π'∞π),则称判定问题π 是NP完全的。

对P类,NP类及NP完全问题的研究推动 了计算复杂性理论的发展,产生了许多新概念,提出了许多新方法。但是还有许多难题至今没有解决,P=NP?就是其中之一。许多学者猜想P≠NP,但无法证明。

庞加莱猜想

庞加莱猜想是法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的世界七大数学难题(七个千年大奖问题)之一。2006年被确认由俄罗斯数学家格里戈里·佩雷尔曼最终证明,但将解题方法公布到网上之后,佩雷尔曼便拒绝接受马德里国际数学联合会声望颇高的菲尔兹奖。

令人头疼的世纪难题【Dyer】

前言:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。

1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但1905年发现提法中有错误,并对之进行了修改,被推广为:“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。”后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。【Dyer】

如果你认为这个说法太抽象的话,我们不妨做这样一个想象:

我们想象这样一个房子,这个空间是一个球。或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。

我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们现在在这样的球形房子里。拿一个气球来,带到这个球形的房子里。随便什么气球都可以(其实对这个气球是有要求的)。这个气球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求)。但是这个气球,我们还可以继续吹大它,而且假设气球的皮特别结实,肯定不会被吹破。还要假设,这个气球的皮是无限薄的。

好,现在我们继续吹大这个汽球,一直吹。吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是汽球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙。

我们还可以换一种方法想想:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;

另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。

为什么?因为,苹果表面是“单连通的”,而轮胎面不是。

看起来这是不是很容易想清楚?但数学可不是“随便想想”就能证明一个猜想的,这需要严密的数

【Dyer】

学推理和逻辑推理。一个多世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终。

艰难的证明之路

2000年5月24日,美国克莱数学研究所的科学顾问委员会把庞加莱猜想列为七个“千禧难题”(又称世界七大数学难题)之一,这七道问题被研究所认为是“重要的经典问题,经许多年仍未解决。”克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。另外六个“千年大奖问题”分别是: NP完全问题, 霍奇猜想(Hodge), 黎曼假设(Riemann),杨-米尔斯理论(Yang-Mills),纳维-斯托克斯方程(Navier-Stokes,简称NS方程),BSD猜想(Birch and Swinnerton-Dyer)。

提出这个猜想后,庞加莱一度认为自己已经证明了它。但没过多久,证明中的错误就被暴露了出来。于是,拓扑学家们开始了证明它的努力。

早期的证明

20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文,失之桑榆、收之东隅。但是在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特海流形。

30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。

帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn's Lemma)而闻名于世,喜好舞文弄墨的数学家约翰•米尔诺(John Milnor)曾经为此写下一段打油诗:“无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力。”

然而,这位聪明的希腊拓扑学家,却最终倒在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。

柳暗花明的突破

这一时期拓扑学家对庞加莱猜想的研究,虽然没能产生他们所期待的结果,但是,却因此发展出了低维拓扑学这门学科。

一次又一次尝试的失败,使得庞加莱猜想成为出了名难证的数学问题之一。然而,因为它是几何拓扑研究的基础,数学家们又不能将其撂在一旁。这时,事情出现了转机。

1966年菲尔茨奖得主斯梅尔(Smale),在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维空间和五维以上的证明,立时引起轰动。

10多年之后的1983年,美国数学家福里德曼(Freedman)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。

拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(Thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。 “就像费马大定理,当谷山志村猜想被证明后,尽管人们还看不到具体的前景,但所有的人心中都有数了。因为,一个可以解决问题的工具出现了。”清华大学数学系主任文志英说。

最后的决战

然而,庞加莱猜想,依然没有得到证明。人们在期待一个新的工具的出现。可是,解决庞加莱猜想的工具在哪里?

工具有了。

理查德•汉密尔顿,生于1943年,比丘成桐大6岁。虽然在开玩笑的时候,丘成桐会戏谑地称这位有30多年交情、喜欢冲浪、旅游和交女朋友的老友“Playboy”,但提起他的数学成就,却只有称赞和惺惺相惜。

1972年,丘成桐和李伟光合作,发展出了一套用非线性微分方程的方法研究几何结构的理论。丘成桐用这种方法证明了卡拉比猜想,并因此获得菲尔茨奖。1979年,在康奈尔大学的一个讨论班上,当时是斯坦福大学数学系教授的丘成桐见到了汉密尔顿。“那时候,汉密尔顿刚刚在做Ricci流,别人都不晓得,跟我说起。我觉得这个东西不太容易做。没想到,1980年,他就做出了第一个重要的结果。”丘成桐说,“于是我跟他讲,可以用这个结果来证明庞加莱猜想,以及三维空间的大问题。”

Ricci流是以意大利数学家里奇(Gregorio Ricci)命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。看到这个方程的重要性后,丘成桐立即让跟随自己的几个学生跟着汉密尔顿研究Ricci流。其中就包括他的第一个来自中国大陆的学生曹怀东。

第一次见到曹怀东,是在超弦大会丘成桐关于庞加莱猜想的报告上。虽然那一段时间里,几乎所有的媒体都在找曹怀东,但穿着件颜色鲜艳的大T恤的他,在会场里走了好几圈,居然没有人认出。这也难怪。绝大多数的数学家,依然是远离公众视线的象牙塔中人,即使是名动天下如威滕(Witten),坐在后排,俨然也是大隐隐于市的模样。

1982年,曹怀东考取丘成桐的博士。1984年,当丘成桐转到加州大学圣迭戈分校任教时,曹怀东也跟了过来。但是,他的绝大多数时间,是与此时亦从康奈尔大学转至圣迭戈分校的汉密尔顿“泡在一起”。这时,丘成桐的4名博士生,全部在跟随汉密尔顿的研究方向。其中做得最优秀的,是施皖雄。他写出了很多非常漂亮的论文,提出很多好的观点,可是,因为个性和环境的原因,在没有拿到大学的终身教职后,施皖雄竟然放弃了做数学。提起施皖雄,时至今日,丘成桐依然其辞若有憾焉。一种虽然于事无补但惹人深思的假设是,如果,当时的施皖雄坚持下去,关于庞加莱猜想的故事,是否会被改写?

在使用Ricci流进行空间变换时,到后来,总会出现无法控制走向的点。这些点,叫做奇点。如何掌握它们的动向,是证明三维庞加莱猜想的关键。在借鉴了丘成桐和李伟光在非线性微分方程上的工作后,1993年,汉密尔顿发表了一篇关于理解奇点的重要论文。便在此时,丘成桐隐隐感觉到,解决庞加莱猜想的那一刻,就要到来了。

与其同时,地球的另一端,一个叫格里戈里·佩雷尔曼的数学家在花了8年时间研究这个足有一个世纪的古老数学难题后,将3份关键论文的手稿在2002年11月和2003年7月之间,粘贴到一家专门刊登数学和物理论文的网站上,并用电邮通知了几位数学家。声称证明了几何化猜想。到2005年10月,数位专家宣布验证了该证明,一致的赞成意见几乎已经达成。

“如果有人对我解决这个问题的方法感兴趣,都在那儿呢—让他们去看吧。”佩雷尔曼博士说,“我已经发表了我所有的算法,我能提供给公众的就是这些了。”

佩雷尔曼的做法让克雷数学研究所大伤脑筋。因为按照这个研究所的规矩,宣称破解了猜想的人需在正规杂志上发表并得到专家的认可后,才能获得100万美元的奖金。显然,佩雷尔曼并不想把这100万美金补充到他那微薄的收入中去。

对于佩雷尔曼,人们知之甚少。这位伟大的数学天才,出生于1966年6月13日,他的天分使他很早就开始专攻高等数学和物理。16岁时,他以优异的成绩在1982年举行的国际数学奥林匹克竞赛中摘得金牌。此外,他还是一名天才的小提琴家,桌球打得也不错。

从圣彼得堡大学获得博士学位后,佩雷尔曼一直在俄罗斯科学院圣彼得堡斯捷克洛夫数学研究所工作。上个世纪80年代末期,他曾到美国多所大学做博士后研究。大约10年前,他回到斯捷克洛夫数学研究所,继续他的宇宙形状证明工作。

证明庞加莱猜想关键作用让佩雷尔曼很快曝光于公众视野,但他似乎并不喜欢与媒体打交道。据说,有记者想给他拍照,被他大声制止;而对像《自然》《科学》这样声名显赫杂志的采访,他也不屑一顾。【Dyer】

“我认为我所说的任何事情都不可能引起公众的一丝一毫的兴趣。”佩雷尔曼说,“我不愿意说是因为我很看重自己的隐私,或者说我就是想隐瞒我做的任何事

本文来源:http://www.zhuodaoren.com/shenghuo286089/

推荐访问:cyberdyer
扩展阅读文章
热门阅读文章