圆锥曲线解题技巧和方法综合

来源:推荐阅读 时间:2017-04-27 09:34:07 阅读:

【www.zhuodaoren.com--推荐阅读】

【篇一】:数学圆锥曲线解题技巧

  【数学圆锥曲线解题技巧】

  1.客观题部分

  例1 (新课标2·2015)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )。

  A。5 B。2 C。3 D。2

  解析 该题的核心知识点有两个:等腰三角形的性质;双曲线的标准方程和性质。①将双曲线方程设定为x2a2-y2b2=1(a>0,b>0),如图;②因为AB=BM,∠ABM=120°,过点M作MN垂直于X轴,垂足为N,在Rt△BMN中,求得BN=a,MN=3a,M点的坐标为(2a,3a),③根据双曲线方程、c2=a2+b2以及离心率e=ca(e>1),可以求的c2=2a2,e=2,因此本题选D。本题涉及的基本思想方法是待定系数法。

  2.主观题部分

  首先,是数形结合的思想方法,这种思想方法特点在于将圆锥曲线从平面的角度视为一种运动中的轨迹,在此背景下,题目的考核目标往往是与轨迹相关的边缘域问题、定值问题、最值问题等。

  例2 (山东·2015)平面直角坐标系xOy中,已知椭圆C:x24a2+y24b2=1(a>b>0)的离心率为32,左、右焦点分别是F1和F2,以F1为圆心以3为半径的圆与以F2为圆心1为半径的圆相交,且交点在椭圆C上。

  (Ⅰ)求椭圆C的方程。

  (Ⅱ)设椭圆E;x24a2+y24b2=1,p为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A和B两点,射线PO交椭圆E于点Q。

  (ⅰ)求OQOP的值。

  (ⅱ)求△ABQ面积的最大值。

  解析 本题的核心知识点有:椭圆的定义;韦达定理与最值问题;椭圆与直线的位置关系问题。①根据椭圆的定义2a是定值,以及e=32,结合椭圆的标准方程求的a=2,b=1,因此椭圆的方程为C:x24+y2=1。②根据题意,设OQOP=λ,P(x0,y0),则Q(-λx0,-λy0)。又x24a2+y24b2=1,所以将P和Q带入方程解得,λ=2,所以OQOP=2。③根据题意设A(x1,y1),B(x2,y2)。将y=kx+m带入方程x216+y24=1得到(1+4k2)x2+8kmx+4m2-16=0,根据韦达定理,由Δ>0,m2<4+16k2(Ⅰ);x1+x2=-8km1+4k2,x1x2=4m2-161+4k2,x1-x2=416k2+4-m21+4k2。因为直线y=kx+m与轴焦点的坐标为(0,m),所以△ABO的面积为S=12mx1-x2=24-m21+4k2m21+4k2,令m21+4k2=t,由Δ≥0,可得m2≤1+4k2(Ⅱ)。由(Ⅰ)和(Ⅱ)可得,0  与数形结合的思想方法相适应的题目类型有:圆锥曲线通过构造出的三角形关系,与直线、韦达定理、函数的最值问题等建立起逻辑关联,依靠代数法或几何法解题,其中涉及例如联立方程法、整体消元法等解题技巧,强化计算能力,助力高考。

  其次,是化归、分类讨论以及函数与方程的思想方法,将这几种思想方法综合起来看,它主要强调考生通过建立起圆锥曲线与方程之间的关联,在简化思想模型的基础上,进行有效地推理与论证。建立在数形结合的基础上,分类锁定知识背景中的相关考点,化归简化思想路径,最终用代数转方程来表达圆锥曲线与关联对象之间的相互关系(例题略)。

  总 结

  在对圆锥曲线问题的解答中,需要考生灵活运用相关知识,综合性的考虑各种可行性方案与可能的因素,配合一定的解题技巧和计算能力给出答案。

  【圆锥曲线公式大全】

  1、椭圆的定义、椭圆的标准方程、椭圆的性质

  2、判断椭圆是 x型还是y型只要看x对应的分母大还是y2对应的分母大,若x对应的分母大则x型,若y2对应的分母大则y型.x2y2

  3、求椭圆方程一般先判定椭圆是x型还是y型,若为x型则可设为2?2?1,若为yaby2x222

  型则可设为2?2?1,若不知什么型且椭圆过两点,则设为稀里糊涂型:mx?ny?1ab

  4、双曲线的定义、双曲线的标准方程、椭圆的性质

  2、判断双曲线是 x型还是y型只要看x前的符号是正还是y前的符号是正,若x前的符号为正则x型,若y前的符号为正则y型,同样的,哪个分母前的符号为正,则哪个分母就为a22x2y2

  3、求双曲线方程一般先判定双曲线是x型还是y型,若为x型则可设为2?2?1,若aby2x2

  为y型则可设为2?2?1,若不知什么型且双曲线过两点,则设为稀里糊涂型:abmx2?ny2?1(mn?0)

  6、若已知双曲线一点坐标和渐近线方程y?mx,则可设双曲线方程为y2?m2x2??(??0),而后把点坐标代入求解

  7、椭圆、双曲线、抛物线与直线l:y?kx?b的弦长公式:AB?? 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法

  9、椭圆、双曲线、抛物线与直线问题的解题步骤:

  (1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y或x

  (2)求出判别式,并设点使用伟大定理

  (3)使用弦长公式

  1、抛物线的定义:平面内有一定点F及一定直线l (F不在l上)P点是该平面内一动点,当且仅当点P到F的距离与点P到直线l距离相等时,那么P的轨迹是以F为焦点,l为准线的一条抛物线.————见距离想定义!!!

  2、(1)抛物线标准方程左边一定是x或y的平方(系数为1),右边一定是关于x和y的一次项,如果抛物线方程不标准,立即化为标准方程!

  (2)抛物线的一次项为x即为x型,一次项为y即为y型!

  (3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x,则准线为”x=多少”, 一次项为y,则准线为”y=多少”!

  (4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!

  (5)抛物线的题目强烈建议画图,有图有真相,无图无真相!

  23、求抛物线方程,如果只知x型,则设它为y?ax (a?0),a>o,开口朝右;a<0,开口朝左;2如果只知y型,则设它为x?ay(a?0),a>o,开口朝上;a<0,开口朝下。

  4、抛物线简单的几何性质:

  (尤其对称性的性质要认真研究应用,经常由线对称挖掘出点对称,从而推出垂直平分等潜在条件!)

  1、 抛物线的焦点弦,设P(x1,y1),Q(x2,y2),且P,Q为抛物线y2?2px经过焦点的一条弦:p2

  (1)P(x1,y1),Q(x2,y2)两点坐标的关系:y1y2??p,x1x2? 42

  (2)焦点弦长公式:PQ?(x1?x2)?p=2p(其中?为直线PQ的倾斜角大小) 2sin?

  (3)垂直于对称轴的焦点弦称为是通径,通径长为2p

  5、(1)直线与椭圆一个交点,则直线与椭圆相切。

  (2)直线与双曲线一个交点,则考虑两种情况:第一种是直线与双曲线相切;第二种是直线与双曲线的渐近线平行。

  (3)直线与抛物线一个交点,则考虑两种情况:第一种是直线与抛物线相切;第二种是直线与抛物线的对称轴平行。

  (4)直线与抛物线的位置关系,理论上由直线方程与抛物线方程的联立方程组实解的情况来确定,实践中往往归纳为对相关一元二次方程的判别式△的考察:直线与抛物线交于不同两点??>0;直线与抛物线交于一点???0 (相切)或直线平行于抛物线的对称轴; 直线与抛物线不相交???0

  6、判断点与抛物线、椭圆位置关系:先把方程化为标准式,而后把点代入,若大于,线外,等于线上,小于线内。

  7、在研究直线与双曲线,直线与椭圆,直线与抛物线位置关系时,若已知直线过一个点(x0,y0)时,往往设为点斜式:y?y0?k(x?x0),但是尤其要注意讨论斜率不存在的情况!!!斜率不存在则设为x?x0.

  11、用点差法解决双曲线的弦的中点问题,一定要记得把所求出的直线方程与双曲线方程联立消去y求出判别式,检验判别式如果小于0,则直线不存在!!!

  1、 椭圆上的一点到椭圆焦点的最大距离为a?c,最小距离为a?c,椭圆上取得最大

  距离和最小距离的点分别为椭圆长轴的两个顶点。

  2、 判断过已知点的直线与抛物线一个交点直线条数:

  (1) 若已知点在抛物线外,则过该点的直线与抛物线一个交点的直线有三条:相切两条,与对称轴平行一条。

  (2) 若已知点在抛物线上,则过该点的直线与抛物线一个交点的直线有两条:相切一条,与对称轴平行一条。

  (3) 若已知点在抛物线内,则过该点的直线与抛物线一个交点的直线有一条:相切0条,与对称轴平行一条。

  (1) 动点的轨迹方程。

  3、 求点的轨迹的五个步骤:

  (1) 建立直角坐标系(在不知点坐标的情况下)。

  (2) 设点:求什么点的轨迹就只能把该点设为(x,y),不能设为其它形式的坐标!!!

  (3) 根据直接法、代入法、定义法列出x和y的关系式。

  (4) 化简关系式。

  (5) 看看题目有没有什么限制条件,根据限制条件写出x或y 的范围!!!易错!!!

  7、过椭圆内部的一个点的直线必与椭圆相交,过双曲线或抛物线内部的一个点的直线与双曲线或抛物线至少有一个交点:与双曲线的渐近线平行,一个交点;不平行,两个交点;与抛物线的对称轴平行,一个交点;不平行,两个交点。

【篇二】:圆锥曲线解题技巧和方法综合(全)

圆锥曲线的解题技巧

一、常规七大题型:

(1)中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

x2y2

如:(1)221(ab0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有ab

x0y02k0。 2ab

x2y2

(2)221(a0,b0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有ab

x0y02k0 2ab

(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

y2

典型例题 给定双曲线x过A(2,1)的直线与双曲线交于两点P1 及P2,1。22

求线段P1P2的中点P的轨迹方程。

(2)焦点三角形问题

椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。

x2y2

典型例题 设P(x,y)为椭圆221上任一点,F1(c,0),F2(c,0)为焦点,ab

PF1F2,PF2F1。

(1)求证离心率esin(); sinsin

3 (2)求|PF1|PF2|的最值。 3

(3)直线与圆锥曲线位置关系问题

直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题

抛物线方程y2p(x1)(p0),直线xyt与x轴的交点在抛物线准线的右边。

(1)求证:直线与抛物线总有两个不同交点

(2)设直线与抛物线的交点为A、B,且OA⊥OB,求p关于t的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题

圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。

最值问题的处理思路:

1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x、y的范围;

2、数形结合,用化曲为直的转化思想;

3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;

4、借助均值不等式求最值。

典型例题

已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B, |AB|≤2p

(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

(5)求曲线的方程问题

1.曲线的形状已知--------这类问题一般可用待定系数法解决。

典型例题

已知直线L过原点,抛物线C 的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。

2.曲线的形状未知-----求轨迹方程

典型例题

已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1, 动

点M到圆C的切线长与|MQ|的比等于常数(>0),

求动点M的轨迹方程,并说明它是什么曲线。

(6) 存在两点关于直线对称问题

在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决) x2y2

典型例题 已知椭圆C的方程1,试确定m的取值范围,使得对于直线43

y4xm,椭圆C上有不同两点关于直线对称

(7)两线段垂直问题

圆锥曲线两焦半径互相垂直问题,常用k1·k2

运算来处理。 y1·y21来处理或用向量的坐标x1·x2

典型例题 已知直线l的斜率为k,且过点P(2,0),抛物线C:y4(x1),直线l与抛物线C有两个不同的交点(如图)。

(1)求k的取值范围;

(2)直线l的倾斜角为何值时,A、B与抛物线C的焦点连线互相垂直。 2

四、解题的技巧方面:

教学中,学生普遍觉得解析几何问题的计算量较大。事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。下面举例说明:

(1)充分利用几何图形

解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。

典型例题 设直线3x4ym0与圆xyx2y0相交于P、Q两点,O为坐标原点,若OPOQ,求m的值。 22

(2) 充分利用韦达定理及“设而不求”的策略

我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

典型例题 已知中心在原点O,焦点在y轴上的椭圆与直线yx1相交于P、Q两点,且OPOQ,|PQ|,求此椭圆方程。 2

(3) 充分利用曲线系方程

利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。

典型例题 求经过两已知圆C1:xy4x2y0和C2:xy2y40的2222

交点,且圆心在直线l:2x4y10上的圆的方程。

(4)充分利用椭圆的参数方程

椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。

x2y2圆锥曲线解题技巧和方法综合。

典型例题 P为椭圆221上一动点,A为长轴的右端点,B为短轴的上端点,求四ab

边形OAPB面积的最大值及此时点P的坐标。

(5)线段长的几种简便计算方法

① 充分利用现成结果,减少运算过程

一般地,求直线与圆锥曲线相交的弦AB长的方法是:把直线方程ykxb代入圆锥曲线方程中,得到型如axbxc0的方程,方程的两根设为xA,xB,判别式为△,则|AB|

过程。

例 求直线xy10被椭圆x4y16所截得的线段AB的长。

② 结合图形的特殊位置关系,减少运算

圆锥曲线解题技巧和方法综合。

在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。 222△,若直接用结论,能减少配方、开方等运算k2·|xAxB|k2|a|

x2y2

例 F1、F2是椭圆1的两个焦点,AB是经过F1的弦,若|AB|8,求值259

|F2A||F2B|

③ 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离

例 点A(3,2)为定点,点F是抛物线y4x的焦点,点P在抛物线y4x上移动,若|PA||PF|取得最小值,求点P的坐标。 22

【篇三】:圆锥曲线解题技巧和方法综合

(本文有两套教案,第一套比较笼统,第二套比较好)

圆锥曲线的解题技巧

一、常规七大题型:

(1)中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

xy0x2y2

如:(1)221(ab0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有0k0。 22

ababxy0x2y2

(2)221(a0,b0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有0k0

aba2b2

(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

y2

典型例题 给定双曲线x过A(2,1)的直线与双曲线交于两点P1 及P2,求线段P1P21。

2

2

的中点P的轨迹方程。

(2)焦点三角形问题

椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。

x2y2

典型例题 设P(x,y)为椭圆221上任一点,F1(c,0),F2(c,0)为焦点,PF1F2,圆锥曲线解题技巧和方法综合。

abPF2F1。

(1)求证离心率e

sin()

sinsin

3

(2)求|PF1|PF2|的最值。

3

(3)直线与圆锥曲线位置关系问题

直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系

数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题 抛物线方程y2p(x1)(p0),直线xyt与x轴的交点在抛物线准线的右边。 (1)求证:直线与抛物线总有两个不同交点

(2)设直线与抛物线的交点为A、B,且OA⊥OB,求p关于t的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题

圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。圆锥曲线解题技巧和方法综合。

最值问题的处理思路:

1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x、y的范围;

2、数形结合,用化曲为直的转化思想;

3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值; 4、借助均值不等式求最值。

典型例题

已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B, |AB|≤2p (1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

(5)求曲线的方程问题

1.曲线的形状已知--------这类问题一般可用待定系数法解决。 典型例题

已知直线L过原点,抛物线C 的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。

2.曲线的形状未知-----求轨迹方程 典型例题

已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1, 动点M到圆C的切线长与|MQ|的比等于常数(>0),求动点M的轨迹方程,并说明它是什么曲线。

(6) 存在两点关于直线对称问题

在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)

x2y2典型例题 已知椭圆C的方程1,试确定m的取值范围,使得对于直线y4xm,椭圆C

43

上有不同两点关于直线对称

(7)两线段垂直问题

圆锥曲线两焦半径互相垂直问题,常用k1·k2

y1·y2

1来处理或用向量的坐标运算来处理。

x1·x2

2

典型例题 已知直线l的斜率为k,且过点P(2,0),抛物线C:y4(x1),直线l与抛物线C有两个不同的交点(如图)。 (1)求k的取值范围;

(2)直线l的倾斜角为何值时,A、B与抛物线C的焦点连线互相垂直。

四、解题的技巧方面:

教学中,学生普遍觉得解析几何问题的计算量较大。事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。下面举例说明:

(1)充分利用几何图形

解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。

典型例题 设直线3x4ym0与圆xyx2y0相交于P、Q两点,O为坐标原点,若

2

2

OPOQ,求m的值。

(2) 充分利用韦达定理及“设而不求”的策略

我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

典型例题 已知中心在原点O,焦点在y轴上的椭圆与直线yx1相交于P、Q两点,且OPOQ,

|PQ|

,求此椭圆方程。 2

(3) 充分利用曲线系方程

利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。

典型例题 求经过两已知圆C1:xy4x2y0和C2:xy2y40的交点,且圆心在直线l:2x4y10上的圆的方程。

2

2

2

2

(4)充分利用椭圆的参数方程

椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。

x2y2

典型例题 P为椭圆221上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB面

ab

积的最大值及此时点P的坐标。

(5)线段长的几种简便计算方法

① 充分利用现成结果,减少运算过程

一般地,求直线与圆锥曲线相交的弦AB长的方法是:把直线方程ykxb代入圆锥曲线方程中,得到型如ax2bxc0的方程,方程的两根设为xA,xB,判别式为△,则

|AB|k2·|xAxB|k2,若直接用结论,能减少配方、开方等运算过程。

|a|

例 求直线xy10被椭圆x4y16所截得的线段AB的长。

② 结合图形的特殊位置关系,减少运算

在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

2

2

x2y2

圆锥曲线解题技巧和方法综合。

例 F1、F2是椭圆AB是经过F1的弦,若|AB|8,求值|F2A||F2B| 1的两个焦点,

259

③ 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离

例 点A(3,2)为定点,点F是抛物线y4x的焦点,点P在抛物线y4x上移动,若

2

2

|PA||PF|取得最小值,求点P的坐标。

圆锥曲线解题方法技巧归纳

第一、知识储备: 1. 直线方程的形式

(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率ktan,[0,)

②点到直线的距离d

③夹角公式:tan

k2k11k2k1

【篇四】:圆锥曲线解题技巧和方法综合

本文来源:http://www.zhuodaoren.com/tuijian693881/

推荐访问:高考圆锥曲线解题技巧 数学圆锥曲线解题技巧
扩展阅读文章
热门阅读文章